\begin{frame}{Incompleteness Theorem} \begin{goal}{} We consider the sets of function and predicate symbols: \begin{scenter} $\asetfuncs = \setexp{\const{0},\, \sunfunc{S}, \sbinfunc{+}, \,\sbinfunc{\cdot}} $ \hspace*{3ex} $\asetpreds = \setexp{ \sbinpred{<} }$ \end{scenter}\pause{} with as intended model \emph{number theory $\boldsymbol{\standardN}$}: \begin{itemize}\setlength{\itemsep}{0pt} \item domain of $\standardN$ is $\nat$, the natural numbers (with 0) \pause \item $\intin{\const{0}}{\standardN} = 0$ \pause \item $\intin{\sunfunc{S}}{\standardN}(n) = n+1$ \pause \item $\intin{\sbinfunc{+}}{\standardN}(n,m) = n+m$ \pause \item $\intin{\sbinfunc{\cdot}}{\standardN}(n,m) = n\cdot m$ \pause \item $\intin{\sbinpred{<}}{\standardN} = \descsetexp{\pair{n}{m}}{n,m\in\nat \text{ such that } n