\begin{frame}{Incompleteness Theorem}
\begin{goal}{}
We consider the sets of function and predicate symbols:
\begin{scenter}
$\asetfuncs = \setexp{\const{0},\, \sunfunc{S}, \sbinfunc{+}, \,\sbinfunc{\cdot}} $
\hspace*{3ex}
$\asetpreds = \setexp{ \sbinpred{<} }$
\end{scenter}\pause{}
with as intended model \emph{number theory $\boldsymbol{\standardN}$}:
\begin{itemize}\setlength{\itemsep}{0pt}
\item domain of $\standardN$ is $\nat$, the natural numbers (with 0)
\pause
\item
$\intin{\const{0}}{\standardN} = 0$
\pause
\item
$\intin{\sunfunc{S}}{\standardN}(n) = n+1$
\pause
\item
$\intin{\sbinfunc{+}}{\standardN}(n,m) = n+m$
\pause
\item
$\intin{\sbinfunc{\cdot}}{\standardN}(n,m) = n\cdot m$
\pause
\item
$\intin{\sbinpred{<}}{\standardN} = \descsetexp{\pair{n}{m}}{n,m\in\nat \text{ such that } n