\begin{frame}{Decidability of Equivalence}
\begin{goal}{Theorem}
It is decidable if two regular languages $L_1$ and $L_2$ are equal.
\end{goal}
\pause
\begin{proof}
We have
\begin{talign}
L_1 = L_2 \quad\iff\quad \mpause[1]{ (L_1 \subseteq L_2) \wedge (L_2 \subseteq L_1) }
\end{talign}
\pause\pause
Both problems on the right are decidable.
\end{proof}
\end{frame}