\begin{frame}{Mixing Right and Left Linear Rules}
\begin{alertblock}{}
Mixing right \emph{and} left linear rules,
the generated language is \emph{not} always regular.
\end{alertblock}
\bigskip
\begin{example}
Let $G$ be the grammar
\begin{talign}
S &\to aA \\
A &\to Sb \\
S &\to \lambda
\end{talign}
Every rule of $G$ is either right or left linear.
\medskip
However, the language $L(G)=\{a^nb^n\mid n\geq 0\}$ is \emph{not} regular.
\end{example}
\end{frame}