\begin{frame}{Operations on Languages}
\begin{block}{Complement}
The complement \alert{$\overline{L}$} = all words that are not in the language $L$:
\begin{talign}
\overline{L} = \Sigma^* \setminus L
\end{talign}
\end{block}
\begin{exampleblock}{}
For $\Sigma = \{\,a\,\}$ and $L = \{\,a,aaa\,\}$. Then $\overline{L} = \{\,\lambda, aa\,\} \cup \{\,a^n \mid n \ge 4\,\}$.
\end{exampleblock}
\pause\bigskip
\begin{block}{Reverse}
The reverse of a language $L$ is
\begin{talign}
\alert{L^R} &= \{\, x^R \mid x \in L \,\}
\end{talign}
\end{block}
\begin{exampleblock}{}
The reverse of $L = \{\,\lambda,ab,bbaba\,\}$ is $L^R = \{\,\lambda,ba,ababb\,\}$.
\end{exampleblock}
\end{frame}