\begin{frame}{Operations on Languages}
\begin{block}{Set operations}
A language is a \emph{set} of words.
\smallskip
So the usual set operations have meaning for languages:
\centerline{$\in$,\; $\subseteq$,\; $\cap$,\; $\cup$,\; $\setminus$,\; \ldots}
\end{block}
\pause
\begin{exampleblock}{}\vspace{-.5ex}
\begin{malign}
ba \in \{\,a,aba,ba\,\} &&
ab \not\in \{\,a,aba,ba\,\}
\end{malign}
\end{exampleblock}
\pause
\begin{exampleblock}{}\vspace{-.5ex}
\begin{malign}
\{\,a,ba\,\} \subseteq \{\,a,aba,ba\,\} &&
\{\,a,b\,\} \not\subseteq \{\,a,aba,ba\,\}
\end{malign}
\end{exampleblock}
\pause
\begin{exampleblock}{}\vspace{-.5ex}
\begin{malign}
\{\,a,aba,ba\,\} \cap \{\,a, ab, ba \,\} = \{\,a,ba\,\}
\end{malign}
\end{exampleblock}
\pause
\begin{exampleblock}{}\vspace{-.5ex}
\begin{malign}
\{\,a,aba,ba\,\} \cup \{\,a, ab, ba \,\} = \{\,a,ab,aba,ba\,\}
\end{malign}
\end{exampleblock}
\pause
\begin{exampleblock}{}\vspace{-.5ex}
\begin{malign}
\{\,a,aba,ba\,\} \setminus \{\,a, ab, ba \,\} = \{\,aba\,\}
\end{malign}
\end{exampleblock}
\end{frame}