\begin{frame}
\frametitle{Compression and Parallel Moves}
\begin{theorem}[Compression]
Let $\atrs$ be an left-linear TRS.
Then $s \ired t$ implies $s \to^{\le \omega} t$.
\end{theorem}
That is, every strongly convergent reduction can be compressed to length $\le \omega$.
\pause\bigskip
\begin{theorem}[Parallel Moves]
Let $\atrs$ be an orthogonal TRS.
Then $t_1 \mathrel{\reflectbox{$\parr$}} s \ired t_2 \;\Rightarrow\; t_1 \ired \cdot \mathrel{\reflectbox{$\parr$}} t_2$.
\begin{center}
\begin{tikzpicture}[node distance=15mm]
\node (s) {$s$};
\node (t1) [below of=s] {$t_1$};
\node (t2) [right of=s,node distance=50mm] {$t_2$};
\node (s') [below of=t2] {$s'$};
\draw [infred] (s) -- (t2);
\draw [infred] (t1) -- (s');
\draw [infred] (s) -- (t1);
\draw [infred] (t2) -- (s');
\draw ($(s)!.5!(t1) + (-2mm,1mm)$) -- ($(s)!.5!(t1) + (2mm,1mm)$);
\draw ($(s)!.5!(t1) + (-2mm,2mm)$) -- ($(s)!.5!(t1) + (2mm,2mm)$);
\draw ($(t2)!.5!(s') + (-2mm,1mm)$) -- ($(t2)!.5!(s') + (2mm,1mm)$);
\draw ($(t2)!.5!(s') + (-2mm,2mm)$) -- ($(t2)!.5!(s') + (2mm,2mm)$);
\end{tikzpicture}
\end{center}
\end{theorem}
\end{frame}