\begin{frame}
\small
\begin{definition}[Common Instance]
\smallskip
\begin{tabular}{ll@{\qquad\qquad}ll}
instance: & terms $s$, $t$ \\[.5ex]
question: & $\exists$
$\mathstrut\text{substitutions $\sigma$, $\tau$}\colon ~ s\sigma = t\tau$ ?
\end{tabular}
\end{definition}
\pause\medskip
\begin{definition}
\alert{most general} common instance (\alert{mgci})
is at least as general as any other common instance
\end{definition}
\pause\medskip
We can compute the most general common instance as follows:
\begin{itemize}
\pause
\item let $\gamma$ be a renaming of the variables in $t$\\ such that $s$ and $t\gamma$ have no variables in common
\pause
\item if $\rho$ is the mgu for $s$ and $t\gamma$, then $s\rho = t\gamma\rho$ is the mgci for $s$ and $t$
% \pause
% \item if $\sigma$ exists, then $s\sigma = t (\gamma\sigma)$ is the mgci\\
% (with substitutions $\sigma$ and $\gamma\sigma$, respectively)
\end{itemize}
\end{frame}