\begin{frame}
\small
\begin{definitions}
\begin{itemize}
\item
A \alert<1>{rewrite rule} (\alert<1>{$\ell \to r$}) is a pair $(\ell,r)$ of terms such that
\begin{itemize}
\item
\makebox[4cm][l]{$\ell \notin \VV$} (the lhs is not a variable)
\smallskip
\item
\makebox[4cm][l]{$\Var(r) \subseteq \Var(\ell)$} (all variables in the rhs occur in the lhs)
\end{itemize}
The terms $\ell$ and $r$ are called left-hand side (lhs) and right-hand side (rhs).
\item<2->
A \alert<2>{term rewrite system} (\alert<2>{TRS}) is pair $\TRS$ consisting
of
\begin{itemize}
\item
\makebox[1cm][l]{$\FF$} signature
\smallskip
\item
\makebox[1cm][l]{$\RR$} set of rewrite rules between terms in
$\TT(\FF,\VV)$
\end{itemize}
\end{itemize}
\end{definitions}
\begin{example}<3->
\smallskip
TRS $\TRS$ with signature $\FF$
\vspace{-1.5ex}
\[
\mG{0} ~ (\text{constant}) \qquad
\mG{s} ~ (\text{unary}) \qquad
\mG{add} ~ (\text{binary})
\]\\[-1.5ex]
$\arity{\m{0}} = 0$, $\arity{\m{s}} = 1$, $\arity{\m{add}} = 2$, and rewrite rules $\RR$
\vspace{-1.5ex}
\[
\GREEN{\begin{array}{r@{~}c@{~}l}
\m{add}(\m{0},y) & \to & y \\[.5ex]
\m{add}(\m{s}(x),y) & \to & \m{s}(\m{add}(x,y))
\end{array}}
\]
\end{example}
\end{frame}