\begin{frame}
\frametitle{Multivalued Dependencies}
\begin{goal}{}
If the FD $A_1, \dots A_n \to B_1, \dots B_m$ holds, the
corresponding MVD
\begin{center}
$A_1, \dots, A_n \mvd B_1, \dots, B_m$
\end{center}
is trivially satisfied.
\end{goal}
\remark{The FD means that if tuples $t,u$ agree on the $A_i$ then
also on the $B_j$. Swapping thus has no effect (yields
$t,u$ again).}
\pause
\begin{block}{\emph{Deduction rules} to derive \emph{all} implied FDs/MVDs}
\begin{itemize}
\item The three Armstrong Axioms for FDs.
\item If $\alpha \mvd \beta$ then $\alpha \mvd \gamma$, where
$\gamma$ are all remaining columns.
\item If $\alpha_1 \mvd \beta_1$ and $\alpha_2 \supseteq \beta_2$
then $\alpha_1 \cup \alpha_2 \mvd \beta_1 \cup \beta_2$.
%% if two tuples agree on attributes alpha_2 they also agree on the
%% beta_2 (which are a subset of alpha_2), thus swapping has no effect
\item If $\alpha \mvd \beta$ and $\beta \mvd \gamma$ then $\alpha
\mvd (\gamma - \beta)$.
\item If $\alpha \to \beta$, then $\alpha \mvd \beta$.
\item If $\alpha \mvd \beta$ and $\beta' \subseteq \beta$ and there
is $\gamma$ with $\gamma \cap \beta = \emptyset$ and $\gamma \to
\beta'$, then $\alpha \to \beta'$.
\end{itemize}
\end{block}
\end{frame}