\begin{frame}
\frametitle{Symmetry}
Symmetry can sometimes help to simplify integrals!
\pause
\begin{block}{}
Suppose $f$ is continuous on $[-a,a]$:
\pause
\begin{itemize}
\item If $f$ is even [$f(-x) = f(x)$], then
\begin{talign}
\int_{-a}^a f(x)\,dx = \mpause[1]{2\int_0^a f(x)\,dx}
\end{talign}
\pause\pause\vspace{-1ex}
\item If $f$ is odd [$f(-x) = -f(x)$], then
\begin{talign}
\int_{-a}^a f(x)\,dx = \mpause[1]{0}
\end{talign}
\end{itemize}
\end{block}
\pause\pause
\begin{exampleblock}{}
\vspace{-1ex}
\begin{talign}
\int_{-1}^1 f(x)\, dx \mpause[6]{\alert{= 0}} &&\text{where}&& f(x) = \frac{\tan x}{1+x^2 + x^4}
\end{talign}
\pause
The function $f$ is \mpause[4]{\alert{odd} since}
\begin{talign}
f(-x) \mpause[1]{ = \frac{\sin (-x) / \cos (-x)}{1+(-x)^2 + (-x)^4} }
\mpause{ = \frac{-\sin x / \cos x}{1+x^2 + x^4} }
\mpause{ = -f(x) }
\end{talign}
\end{exampleblock}
\end{frame}