\begin{frame}
\frametitle{Review - Midterm Exam 3}
\begin{exampleblock}{}
Show that the equation
\begin{talign}
e^x = x^3 + 1
\end{talign}
has a solution for $x$ in the real numbers.
\pause\medskip
We define
\begin{talign}
f(x) = e^x - x^3 - 1
\end{talign}
\pause
Then $f(x) = 0 \iff $ $x$ is a solution of the equation.
\pause\medskip
We have
\begin{talign}
f(-1) &= e^{-1} - {-1}^3 - 1 = e^{-1} - 2 < 0 \\
\mpause[1]{f(1) &= e^{1} - {1}^3 - 1 = e^{1} > 0}
\end{talign}
\pause\pause
More over $f$ is continuous!
\pause\medskip
Thus by the Intermediate Value Theorem there exists $c$ in $[-1,1]$ such that $f(c) = 0$.
\pause\medskip
Hence the equation has a solution $x = c$.
\end{exampleblock}
\end{frame}