\begin{frame}
\frametitle{Exponential Radioactive Decay}
\begin{exampleblock}{}
Let $m(t)$ be the mass of a radioactive substance after time $t$.
\end{exampleblock}
\pause\medskip
Then the \emph{relative decay rate} rate
\begin{talign}
-\frac{m'}{m} = k &&\mpause[1]{\text{ or equivalently }}&&\mpause[1]{-\frac{1}{m}\frac{dm}{dt} = k}
\end{talign}
is constant.
\pause\pause\bigskip
Then the solution is of the form
\begin{talign}
m = Ce^{-kt}
\end{talign}
\pause\bigskip
Physicists typically express the decay in terms of half-life.
\pause
\begin{block}{}
The \emph{half-life} is the time until only half of the quantity is left.
\end{block}
\end{frame}