\begin{frame}
\frametitle{Finding a Tangent}
\begin{block}{}
The \emph{tangent line} to the curve $f(x)$ at point $P = (a,f(a))$
is the line through $P$ with slope
\begin{talign}
m = \lim_{x\to a} \frac{f(x) - f(a)}{x - a}
\end{talign}
provided that the limit exists.
\end{block}
\pause\medskip
\begin{exampleblock}{}
Find an equation of the tangent line to $f(x) = x^2$ at point $(1,1)$.
\pause\medskip
We use the equation for the slope with $a = 1$:
\begin{talign}
m
&= \lim_{x\to a} \frac{f(x) - f(a)}{x - a}
\mpause[1]{= \lim_{x\to 1} \frac{f(x) - f(1)}{x - 1}}
\mpause[2]{= \lim_{x\to 1} \frac{x^2 - 1}{x - 1}}\\
&\mpause[3]{= \lim_{x\to 1} \frac{(x + 1)(x-1)}{x - 1}}
\mpause[4]{= \lim_{x\to 1} (x + 1)}
\mpause[5]{= 2}
\end{talign}
\pause[9]
Thus $y - 1 = 2 (x-1)$\pause, that is, the tangent is $y = 2x - 1$.
\end{exampleblock}
\vspace{10cm}
\end{frame}