\begin{frame}
\frametitle{1st Midterm Exam - Review}
\begin{exampleblock}{}
Express the domain of the function
\begin{talign}
f(x) = \frac{x + \log (x+1) + \sqrt{5-x}}{x-2}
\end{talign}
as a union of intervals.
\pause\medskip
We analyze the parts:
\begin{itemize}
\pause
\item $\log (x+1)$ is defined for \pause $x > -1$, thus $(-1,\infty)$
\pause
\item $\sqrt{5-x}$ is defined on $x \le 5$, thus $(-\infty,5]$
\pause
\item the fraction $\frac{\ldots}{x-2}$ is defined for \pause$x\ne 2$, thus $(-\infty,2) \cup (2,\infty)$
\end{itemize}
\pause\medskip
\alert{The domain of $f$ is not:
\begin{talign}
(-1,\infty) \cup (-\infty,5] \cup (-\infty,2) \cup (2,\infty) \mpause[1]{\quad=\quad (-\infty,\infty)}
\end{talign}}
\pause\pause
The domain of $f$ is:
\begin{talign}
(-1,2) \cup (2,5]
\end{talign}
\end{exampleblock}
\end{frame}