\begin{frame}
\frametitle{Continuity: Intermediate Value Theorem}
\begin{exampleblock}{}
Show that the following equation
\begin{talign}
6 \cdot 3^{-x} = 4 - x
\end{talign}
has a solution for $x$ in $[0,1]$.
\pause\medskip
Define
\begin{talign}
6 \cdot 3^{-x} = 4 - x \quad\iff\quad 6 \cdot 3^{-x} + x - 4 = 0
\end{talign}
\pause
The function $f(x) = 6 \cdot 3^{-x} + x - 4$ is a sum and product of continuous functions,
and hence continuous.
\pause\medskip
We have:
\begin{itemize}
\pause
\item $f(0) = \pause 6\cdot 3^0 + 0 - 4 = 2$
\pause
\item $f(1) = \pause 6\cdot 3^{-1} + 1 - 4 = -1$
\end{itemize}
\pause
Moreover $-1 < 0 < 2$.
\pause\medskip
By the Intermediate Value Theorem
there exists $x$ in the interval $[0,1]$
such that $f(x) = 0$.
This $x$ is a solution of the equation.
\end{exampleblock}
\end{frame}