\begin{frame}
\frametitle{Exercises}
% \begin{exampleblock}{}
% Assume that a ball is dropped,
% and we have the following measurements:
% \begin{itemize}
% \item height at time $0s$ is $490$m
% \item height at time $2s$ is $472$m
% \item height at time $4s$ is $414$m
% \end{itemize}
% Find a quadratic function for the height of the ball after time $t$.\\
% When does the ball hit the ground?
% \end{exampleblock}
Formula for the height:
\begin{exampleblock}{}
\begin{malign}
h(t) = -5t^2 + t + 490
\end{malign}
\end{exampleblock}
\pause\bigskip
When does the ball hit the ground? \pause When the height is $0$:
\pause
\begin{talign}
&-5t^2 + t + 490 = 0 \quad
\mpause[1]{\implies t^2 - \frac{t}{5} - 98 = 0}
\end{talign}
\pause\pause
Solving the quadratic formula:
\begin{talign}
t = \frac{1}{10} \pm \sqrt{(\frac{1}{10})^2 + 98}
\mpause[1]{= \frac{1}{10} \pm \sqrt{\frac{1}{100} + \frac{9800}{100}}}
\mpause[2]{= \frac{1}{10} \pm \frac{\sqrt{9801}}{10}}
\end{talign}
\pause\pause\pause
We know $100^2 = 10000$ \pause and $(100 - n)^2 = 10000 - 200n + n^2$.\\
\pause
Thus $\sqrt{9801} = 99$.\pause
\begin{talign}
t = \frac{1}{10} \pm \frac{99}{10}
\mpause[1]{\quad\implies\quad t = 10 \text{\;\; or \;\;} t = - \frac{98}{10} }
\end{talign}
\pause\pause
Thus the ball hits the ground after $10$ seconds.
\end{frame}