\begin{frame} \frametitle{Wherever you put the $q$'s, $q \to \all \some q$ always holds!} \begin{minipage}{0.53\textwidth} \begin{center} \begin{tikzpicture}[ default, point/.style={circle, draw=blue, thick, inner sep=3pt, minimum size=9mm}, node distance=20mm] \node (3) [point] {?}; \node [ao=3] {$w_3$}; \node (2) [point, below right of=3,yshift=-3mm] {?}; \node [aro=2] {$w_2$}; \node (1) [point, below left of=3,yshift=-3mm] {?}; \node [alo=1] {$w_1$}; \begin{scope}[shorten <= 1mm, shorten >= 1mm, very thick,>=stealth] \draw [->] (1) to[bend left=15] (2); \draw [->] (2) to[bend left=15] (1); \draw [->] (2) to[bend left=15] (3); \draw [->] (3) to[bend left=15] (2); \draw [->] (3) to[bend left=15] (1); \draw [->] (1) to[bend left=15] (3); \end{scope} \draw [rounded corners=2mm, dashed] (-25mm,-23mm) rectangle (25mm,9mm); \node at (-25mm,8mm) [anchor=north east,inner sep=2mm] {$\mathcal{M}_?$}; \end{tikzpicture} \end{center} \end{minipage}~% \begin{minipage}{0.46\textwidth} \begin{itemize} \item $\BLUE{W}= \{\;w_1,w_2,w_3\;\}$ \item $R = \{\pair{w_1}{w_2},\; \pair{w_2}{w_1},$ \\ \;\hfill $\pair{w_2}{w_3},\; \pair{w_3}{w_2}, $ \\ \;\hfill $\pair{w_1}{w_3},\; \pair{w_3}{w_1}\;\}$ \item $\M_? = (W,R,L_?)$ \end{itemize} \end{minipage} \smallskip\pause \begin{exampleblock}{We check one world ($w_1$), with and without $q$} \begin{itemize} \pause \item Assume that $q \not\in L_?(w_1)$, \pause \\ then $w_1 \fc q \to\all\some q$ \tabto{4.5cm} since $\;w_1 \not\fc q$ \pause \item Assume that $q \in L_?(w_1) $, \\ \mpause[4]{then $w_1 \fc q \to \all\some q$ \tabto{4.5cm} since}\mpause[3]{ $\;w_1 \fc \all\some q$ \tabto{4.5cm} since}\mpause[2]{ $\;w_2 \fc \some q$ and $\;w_3 \fc \some q$ \tabto{4.5cm} since}\mpause[1]{ $\;w_1\fc q$ } \end{itemize} \end{exampleblock} \pause\pause\pause\pause\pause \emph{Because of the arrow configuration} (always back and forth), $q \to \all\some q$ is \emph{always valid} wherever you put the $q$'s. \bigskip \end{frame}