Logic and Modelling — Natural Deduction for Propositional Logic —

Jörg Endrullis

VU University Amsterdam

$$\alpha_1,\ldots,\alpha_n \vdash \beta$$

means: there exists a natural deduction derivation with

- premises $\alpha_1, \ldots, \alpha_n$, and
- conclusion β.

Natural deduction is a formal system with strict formal rules!

Rules for \wedge and \vee

 $\frac{\beta}{\alpha \lor \beta} \lor_{i_2}$

$$\frac{\alpha}{\alpha \lor \beta} \lor_{i_1}$$

Derivation with Natural Deduction

Derivation with Natural Deduction Can we derive $q \wedge \neg r$ from $(p \wedge q) \wedge \neg r$? 1 $(p \land q) \land \neg r$ premise $p \wedge q$ $\wedge_{e_1} 1$ 2 $\wedge_{e_2} 2$ 3 q $\wedge_{e_2} 1$ 4 $\neg r$ ∧_i 3, 4 $q \wedge \neg r$ 5

Hence we have derived

$$(p \land q) \land \neg r \vdash q \land \neg r$$

Rules for $\neg\neg$ and \rightarrow

Elimination rules for \rightarrow

This rule is called "Modus Ponens" (MP):

$$\frac{\alpha \quad \alpha \to \beta}{\beta} \quad \to_{e} (or MP)$$

This rule is called "Modus Tollens" (MT):

$$\frac{\alpha \to \beta \qquad \neg \beta}{\neg \alpha} \quad MT$$

Derivation with Natural Deduction

Can we derive q from $\neg \neg p \rightarrow (\neg q \rightarrow r), p, \neg r$?			
1	$\neg \neg p \rightarrow (\neg q \rightarrow r)$	premise	
2	p	premise	
3	¬ <i>r</i>	premise	
4	$\neg \neg p$	¬¬, 2	
5	eg q ightarrow r	<i>→e</i> 4,1	
6	$\neg \neg q$	MT 5,3	
7	q	¬¬ _e 6	

Hence we have derived

 $\neg \neg p \rightarrow (\neg q \rightarrow r), \ p, \ \neg r \quad \vdash \quad q$

Introduction of \rightarrow

Allowed block structures

Blocks are allowed to be nested inside each other:

Blocks are not allowed to intersect:

(Compare with scopes of variables in programming languages.)

Derivation with Natural Deduction

Hence we have derived

$$p \rightarrow (q \rightarrow r), p \vdash \neg r \rightarrow \neg q$$

Copy Rule

This concludes the derivation.

Rules for \neg and \bot

Example

Prove	$\bullet \neg \neg p \rightarrow (\neg q \rightarrow r), \ p, \ \neg r \vdash q$	without $\neg \neg_i$ and MT.
1	$\neg \neg p \rightarrow (\neg q \rightarrow r)$	premise
2	p	premise
3	$\neg r$	premise
4	$\neg p$	assumption
5	\perp	<i>¬_e</i> 2,4
6	$\neg \neg p$	<i>¬i</i> 4−5
7	eg q ightarrow r	<i>→e</i> 6,1
8	$\neg q$	assumption
9	r	→ _e 8,7
10	\perp	<i>¬_e</i> 9,3
11	$\neg \neg q$	<i>¬i</i> 8−10
12	q	¬¬ _e 11

MT and $\neg \neg_i$ as "derived rules"

The Modus Tollens rule derives $\neg \alpha$ from $\alpha \rightarrow \beta$ and $\neg \beta$. We can derive it using other rules as follows: premise $\alpha \rightarrow \beta$ 1 premise 2 $\neg\beta$ 3 α assumption β $\rightarrow_e 3,1$ 4 *¬_e* 2,4 5 *¬*, 3–5 6 $\neg \alpha$

Thus: $\alpha \rightarrow \beta, \ \neg \beta \vdash \neg \alpha$.

This shows that $\neg \neg_i$ and MT are **not needed**, but sometimes help to make derivations easier or shorter.

Example

Prove	e $p \lor \neg q, \neg p \rightarrow q \vdash p$!	
1	$ ho \lor eg q$	premise
2	eg p ightarrow q	premise
3	p	assumption
4	eg q	assumption
5	$\neg \neg p$	MT 2,4
6	p	¬¬ _e 5
7	p	∨ _e 1, 3–3, 4–6

Example

Proof by Contradiction

This is known as **Proof by Contradiction (PBC)**! Also known as **Reductio ad Absurdum (RAA)**!

Proof by Contradiction as a Rule

Law of Excluded Middle

Law of Excluded Middle Rule

 $\frac{1}{\alpha \vee \neg \alpha}$ LEM

(The rule does not have premises.)

Sho	w that	$oldsymbol{ ho} ightarrow oldsymbol{q} \ dash \sigma ightarrow oldsymbol{q} \ dash das$	
1		$oldsymbol{ ho} ightarrow oldsymbol{q}$	premise
2		$ ho \lor eg ho$	LEM
3		p	assumption
4		q	<i>→_e</i> 3,1
5		$\neg p \lor q$	∨ _{i₂} 4
6		¬ <i>p</i>	assumption
7		$\neg p \lor q$	<i>∨_{i1}</i> 7
8		$ eg p \lor q$	∨ _e 2, 3–5, 6–7

Law of Excluded Middle is Derivable

Example from a Previous Exam

Show that
$$\vdash \neg q \lor (p \rightarrow q)$$
 :
1 $q \lor \neg q$ LEM
2 q assumption
3 p assumption
4 q $copy 2$
5 $p \rightarrow q$ $\rightarrow_i 3-4$
6 $\neg q \lor (p \rightarrow q)$ $\lor_{i_2} 5$
7 $\neg q$ assumption
8 $\neg q \lor (p \rightarrow q)$ $\lor_{i_1} 6$
9 $\neg q \lor (p \rightarrow q)$ $\lor_e 1, 2-6, 7-8$

Example from a Previous Exam

Shov	v that	$\vdash \neg q \lor (p ightarrow q)$	with F	PBC instead of LEM:
1		$\neg(\neg q \lor (p \to q))$		assumption
2		$\neg q$		assumption
3		$ eg q \lor (p ightarrow q)$		∨ _{i1} 2
4		1		<i>¬_e</i> 3,1
5		q		PBC 2–4
6		p		assumption
7		q		сору 5
8		$oldsymbol{ ho} o oldsymbol{q}$		$\rightarrow_i 6-7$
9		$ eg q \lor (oldsymbol{ ho} o oldsymbol{q})$		∨ _{i₂} 8
10				<i>¬_e</i> 9,1
11		$ eg q \lor (p ightarrow q)$		PBC 1–11

More Exam Preparation Tasks

Exam Exercises

Try to derive yourself:

- ▶ $p \lor q$, $\neg p \vdash q$
- $\blacktriangleright \ p \to (q \to r) \ \vdash \ q \to (p \to r)$
- $\blacktriangleright (p \rightarrow q) \rightarrow r \vdash p \rightarrow (q \rightarrow r)$
- $\triangleright p \lor (q \land r) \vdash p \lor q$
- $\bullet \ a \lor b, \ a \to c, \ \neg d \to \neg b \ \vdash \ c \lor d$
- $\bullet (a \to b) \land (b \to a) \vdash (a \land b) \lor (\neg a \land \neg b)$
- $\bullet \ a \land (b \lor c) \ \vdash \ (a \land b) \lor (a \land c)$
- $\blacktriangleright \vdash ((p \rightarrow q) \rightarrow p) \rightarrow p$