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Modeling large-scale reactive systems via graph transformation systems (GTS) [5] is often a complex
task for beginners, particularly when model checking reveals correctness violations, where correctness
properties are expressed via some formulae S (i.e., a set of formal properties). Then, the model designer
requires to fix the problem in the model M until M |= S. In such cases, it is helpful to backtrack and
provide counterexample traces for the model designer. However, before a user can benefit from generated
counterexamples for debugging this first requires an understanding of the error cause and knowledge of
the details of the graphs, rules and their disciplined interaction involved.

This can be difficult if there is a plethora of different rules, node and edge types. Moreover, visually
interpreting graph-based state traces is difficult without appropriate tool support and may obscure in
terms of pinpointing what went wrong. Additionally, reactive system models are heavily domain-specific
since the static and dynamic semantics usually vary from application to application.

Therefore, we seek a universal method for reactive system models encoded as “(bi)graph programs”
that generates human-friendly explanations for situations where rules cannot be applied. Specifically, we
aim to understand why a rule fails at a given state and offer interpretable, natural language explications
for the model designer. Additionally, even when graph programs are correct, providing live explications
during runtime can elucidate why certain rules cannot be applied due to unmet preconditions. This could
contribute to a better understanding of system behavior expressed by bigraph programs and may lower
the barrier to entry for modeling reactive systems using bigraphical reactive systems (BRS) [8].

Problem Definition The problem of locally explainable graph transformation rules is defined here as
follows.

• Given: A system modeled by GT that is not correct w. r. t. some correctness properties. For
example, a rule R could not be applied at some state x.

• Solution: An answer for the specific failure. For example, an answer to “Why did rule R fail for
state x?”; or, equivalently “Which properties were violated in state x so that rule R could not be
applied?”

A solution to this problem seeks to provide self-explanatory error causes for model designers in nat-
ural language. The approach shall work on any graph under the condition that only meaningful domain-
specific labels are used for nodes and edges as well as for the rules.

Explainable Rules

Bigraph Programs In the spirit of graph programs [9, 4], we define bigraph programs based on the
theory of BRSs. This allows us to define a GTS comprising a set of reaction rules applied in a disciplined
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manner to achieve high-level computation goals, by either following explicit control flows, or implicitly
by the causal dependencies of the rules itself. Here, bigraph programs are executed by model checking.

Graph Transformation Properties In addition to the fact that graph transformation rules explicitly
inform about their intent via their label and provide structural insights via the left-hand and right-hand
side, we also leverage their intrinsic properties when describing the effect of a rule application (see [5,
p. 311]) to shape their explanatory power:

• Complete: Any effect specified in the rule is performed in the concrete transformation;

• Minimal Nothing is done beyond what is specified in the rules;

• Local: The transformation only affects the fraction of the host graph that the match covers.

This has a direct impact on the “boundary” of what we can actually explain when a transformation is
performed.

Approach To demonstrate the approach, we model a simple vending machine using BRSs by taking
a process-based view. The system contains two interacting processes S = VM | PHD, and its behavior
is specified by the five reaction rules “Insert Coin” (R1), “Push Button 1” (R2), “Push Button 2” (R3),
“Give Coffee” (R4), and “Give Tea” (R5). Consider now a state in this example, where the system
cannot apply the “Insert Coin” rule. The procedure for producing local explanations for such cases is
illustrated in Fig. 1. This approach relies on the compositional property of bigraphs when a reaction takes
places. Given a bigraph a, and if it can be decomposed into a ≏C.R.d, the next state can be obtained by
rewriting it to a′ ≏ C.R′.d. The first step State Comparison evaluates differences between each part of
the decomposition. By that we find conflicting differences between the previous state a and the current
state a′ w. r. t. rule R. A selection of these matches is taken into account in the next step to instantiate a
prompt template for the LLM to complete. The response of this prompt contains generic information of
the program error message (“Reaction rule [insertCoin] failed”) and details of conflicting differences.1

Then, we execute a second prompt asking the LLM to provide a description of the bigraph state a′ that
refers to the “real-world”. In both cases, graphs are always translated into a textual description first,
which the LLM can process, and later interpreted with the help of the user-defined node and edge labels.
Finally, combining both responses of the two prompts, the LLM is asked to derive what “this” suggests.

Filter
Matches

State
Comparison

LLM

Figure 1: Schematic representation of the process for creating locally explainable rules with bigraphs.

1For example, a generated description for conflicting differences between the previous state a and the current state a′ is
“[Coin] is not contained in [Wallet]” and “[Coin] is contained in [VendingMachine]” for a and a′, respectively.
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Response Categories Following the approach in combination with Gpt 3.5, we achieved positive initial
results. Without any fine-tuning, the LLM was more or less able to correctly interpret the system model.
In this regard, we may distinguish different categories of explications w. r. t. our problem definition. For
brevity, we present for each category an exemplary response without a formal definition:

• Direct Explanation: “This error message suggests that the program has attempted to apply a
reaction rule that requires the presence of a coin, but none is found within the wallet. It is likely
that the user has attempted to perform some action that requires coins to be present in their wallet,
but none are found.”

• Thinking outside the box: “This error message suggests that the user does not have the correct
coins in their wallet to use in the vending machine. It is likely that the vending machine requires a
certain type of coin, or a certain denomination of coin, that the user does not have.”2

• Solution-driven: “This suggests that the user does not have enough coins stored in their wallet to
perform the reaction rule ’insertCoin’. It is likely that the user needs to add more coins to their
wallet in order to perform the desired action.”

Especially, responses that fall into the last category allow to develop the notion of a “self-repairing GTS.”
An appropriate compensation rule could be triggered to repair the system (e.g., adding one coin to the
wallet of the PhD student).

Conclusion

Our preliminary result has shown that our naive approach can provide local explications for a simple
vending machine system. To expand research, the following directions seem fruitful:

Rule Types Investigating the general interpretability of other rule types beyond the preliminary work,
including stochastic/probabilistic [7, 2], conditional [1], prioritized, and nested rules.

Connecting Local Explanations Extending explications beyond local rule effects to explain more com-
plex bigraph programs, such as the multi-agent path finding problem modeled in [6] using BRSs.
Certainly, this involves integrating advanced notions of causality such as tracking rules, traceability
links, and possibly quantum causal graph dynamics [3] for comprehensive reasoning. Furthermore,
methods are required that connect local explanations into complete cause-effect narratives using
backtracking and counter-examples. For example: “The PhD student inserted a coin and ordered
coffee, but the second attempt failed since the machine had no drinks left, causing it to malfunction
and retain the money.”
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2Our vending machine use case did not employ a coin currency but it might be worth to take that into consideration when
designing a system.
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