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Graph Neural Networks (GNNs) [9] are neural networks operating on graphs to compute node- or
graph-level properties, and predict nodes or edges. One of the basic forms are Message Passing Neural
Networks (MPNNs) [2] where each node sends a message to its neighbours based on its current state, then
aggregates messages received from its neighbours to update their own state. Aggregation is expressed by
the multiplication of feature vectors (carrying node attributes) with the adjacency matrix of the graph.

This model has limited expressiveness because the aggregation functions used are required to com-
mute with graph isomorphisms. This means that they cannot use node identities but only their properties.
For example, MPNNs cannot detect triangles. Extensions have been proposed including Cooperative
Graph Neural Networks (CoGNNs) [1] where nodes are autonomous agents that decide, based on trained
probabilities, if to listen to or send messages. This allows a node to adapt the interaction with its neigh-
bourhood and act asynchronously.

Neither MPNNs nor CoGNNs consider the graph structure itself as data. Instead, the topology pro-
vides a fixed scaffold to compute node and edge attributes. This is an obvious restriction of the types
of problems that can be modelled, but also limits the expressiveness of attribute computations express-
ible [3].

To generalise such a model while retaining its local, agent-based operation, we consider allowing:
messages to carry edges to refer to nodes; redirection or free creation and deletion of edges; creation and
deletion of nodes, possibly with an upper limit on the total number of nodes.

At the most expressive level, we have a model reminiscent of actor grammars [4] where actors can
send and receive messages asynchronously, change their attributes, create or delete edges to other actors,
create other actors and remove themselves from the graph.

We would like to explore the following questions:

1. How can models at different levels be implemented efficiently using matrix operations?

2. For which types of problems are agent- or rule-based models competitive?

3. How can we assess the expressiveness of such models?

As a starting point for (1) we observe that the multiplication of an adjacency matrix with a vec-
tor carrying node attributes used in the implementation of MPNNs is an efficient implementation of a
multi rule that, for all nodes in a graph, accesses and aggregates the attributes of all its neighbours [5].
Previous studies of matrix implementations of graph transformations have focused on representing the
double-pushout construction [6] but we believe that certain forms of universally quantified parallel graph
transformations are a better match to matrix multiplication.

For (2) a direct implementation of an agent-based model would be competitive in distributed systems
where, due to privacy concerns or asynchronous operation, it is impossible to establish a global graph
and hence no adjacency matrix is available. For (3) the Weisfeiler-Lehman isomorphism test [3] is
commonly used as a measure of expressiveness for computing graph-level properties and it is known that
most common types of GNNs are at most as expressive as 1-WL [7] while MPNNs are less powerful [8].
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However, we would like to extend such an analysis to forms of GNNs that allow to change the graph
structure, computing an output from an input graph rather than just node, edge or graph properties.

These types of graph computations can be expressed as functions GC : GraphI → Rm for graph-
level computations and NC : GraphI → (Rm)n for node-level computations where m is the number of
attributes per node and n is the number of nodes of the input graph. Here, computations do not change the
input graph, so we only output the data in vectors of real numbers, and it only allows for homogeneous
graphs where every node has the same number m of real-valued attributes. In general, we can see a
deterministic graph transformation as functions GT : GraphI → GraphO from a class of input graphs to
a class of output graphs.

We can use the first notion to compare GNN-type approaches with general graph transformations, e.g.
graph reduction systems to classify and compute metrics on graphs, and the second to capture general
graph transformations. Both can easily be generalised towards non-deterministic computations by using
relations rather than functions.

Now we can analyse computational models such as MPNNs by the graph computations they can
implement, e.g., we know that MPNNs can count the number of nodes in a graph or compute the average
degree, but not count the number of triangles. If messages can refer to nodes, as in the actor model,
triangles can be identified if each node sends each neighbour a message referencing all its neighbours.
Then a node can detect triangles by comparing each neighbour of a neighbour to their own neighbours.
A similar effect can be achieved if we allow to match two-hop paths or materialise them by transitive
edges.
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