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Graph Neural Networks (GNNs) operate primarily by performing matrix operations, such as mul-
tiplication, Hadamard product, transposition and inversion, on graph adjacency matrices. Due to their
essential use in machine learning, they are efficiently implemented even for large matrices. Assuming
two matrices M and N of size a×b and c×d respectively, the complexity of the four operations is:

1. Matrix Multiplication: O(abd). This can be optimised further for square matrices, by using
Strassen’s algorithm, with complexity O(a2.81).

2. Hadamard Product: O(ab), where for two matrices, a = c and b = d.

3. Matrix Transposition (one matrix): O(ab).

4. Matrix Inversion (one matrix): O(a3) with Gaussian elimination. This can be optimised further by
using the Coppersmith-Winograd algorithm, with complexity O(n2.376).

Instead, the complexity of finding a match of the LHS in the host graph, as required in rule-based
graph rewriting, is O(nk ∗ml), where n is the number of nodes and m is the number of edges in the host
graph, and k is the number of nodes and m is the number of edges in the LHS [3].

GNNs perform a simple form of parallel graph rewriting [7] where a single rule with a central node
is applied to all nodes of the graph to aggregate data from all its neighbors [6]. However, this model
can only compute on node or edge attributes, not change the graph itself, and pattern matching is usually
restricted to this node and its outgoing edges. We are interested in a GNN architecture that can efficiently
implement general transformations from input to output graphs. We consider the following existing
architectures as steps in this direction.

Message passing Neural Networks (MPNNs) define functions message and update that, when iter-
ated, propagate graph data for up to n hops, where n is the number of layers. The message passing
mechanism is critical in the Recursive, Convolutional and Autoencoder GNN categories. On their own,
the objective is to aggregate information from a node neighbourhood, not to obtain a graph. There are
approaches incorporating graph rewiring as a prepossessing step to improve the flow of information [2],
but not to compute a new output graph.

Cooperative GNN (Co-GNN) [5] is a framework for well-established GNNs such as Graph Convolu-
tion Network (GCN), Graph Isomorphism Network (GIN), and Graph Attention Networks (GAT). Using
a probabilistic action network to learn a node’s behaviour in the message-passing cycle, the environment
network executes the cycle. Each node can decide to exhibit the usual behaviour (both receive and prop-
agate information), listen (but not propagate), broadcast (but not receive), and isolate (to neither receive
nor propagate). The action network constructs a new adjacency matrix to improve information flow and
aggregation. This is a form of dynamic rewiring that produces new graph structures, but they are not part
of the output.
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Graph Transformer Networks (GTNs), instead of recursively aggregating a node’s neighbourhood
with message passing, transform it using the attention mechanism [8]. Attention scores for pairs of
nodes in a graph could be used to generate new adjacency matrices, and thus output graph structures.
Instead, GTNs feed attention score matrices into a Graph Convolutional Network (GCN) to compute a
node embedding.

HOPPITY is a programming language-specific code transformation model using a graph-based rep-
resentation of abstract syntax trees (ASTs), to learn from input graphs and sequences of observed trans-
formations [4]. The model utilises MPNNs, Co-GNN-supported architectures, and the attention mecha-
nism. While it is not the goal of HOPPITY to provide a general graph transformation tool, it does graph
transformation in the domain-specific context of program transformations.

Graph Autoencoders implement an encoder to obtain a latent space node embedding and a decoder
to reconstruct a graph from the embedding, see e.g. [1]. This leads to the creation of a new graph over
the same set of nodes by deciding for each pair of nodes if they should be linked. The decision is based
on the similarity of the node embeddings, i.e., their distance in the embedding space. The autoencoder
is trained to produce embeddings that reflects as closely as possible the original graph, not to change its
structure. However, one could consider training a similar model to reproduce given input-output pairs of
graphs.

In conclusion, there are a number if ways in which graph-to-graph transformations can be imple-
mented based on current GNN technology but, apart from HOPPITY, most approaches are motivated by
internal optimisation.
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