
Submitted to:
GCM 2024 (Lightning)

This work is dedicated to the public domain.

Extended Abstract for Lightning Talk:
A Conflict-Free Replicated Data Type for Graph Rewriting

Luca Mondada
University of Oxford

Oxford, UK
luca@mondada.net

Graph rewriting is the problem of finding the best equivalent graph, given an input graph and a set of
equivalence relations, the rewrite rules. In the absence of theoretical guarantees such as the confluence
of rewriting systems [2], graph rewriting becomes a complex optimisation problem. In this scenario a
naive exploration of the search space that applies one rewrite at a time suffers from two problems:

Locality. Cost functions are often local properties, i.e. they can be given as an expression of the cost
function evaluated on subgraphs

C (G) = A ({C (H) | H ∈ P(G)})

where G is a graph, P(G) is a partition of G into subgraphs, C is the cost funtion and A is some
cost aggregation function. Not exploiting this property results in search trees with high branching
factors that scale with the size of G, resulting in up to exponential overheads.

Parallelism. A∗ and related backtracking search algorithms [1, 3] are inherently sequential in nature,
making them hard to parallelise [10].

This extended abstract is a proposal for a novel data structure that explicitly leverages the locality of
graph rewrites to simultaneously reduce the search space and parallelise the search algorithm. We expect
speedups in particular in the regime of large graphs and constant size rewriting rules.

Background: Equality saturation and CRDTs

We take ideas from the equality saturation technique used in term rewriting [6, 8] and the concept of a
conflict-free replicated data type (CRDT) popular in distributed computing applications [5].

Term rewriting can be viewed as a special case of graph rewriting in which the input and the rewrite
rules are algebraic terms; every expression is thus an algebraic syntax tree (AST). Every node of an AST
represents a subterm of the expression, given by the subtree that is rooted in that node. By storing the
equivalence class of subterms obtained through rewrites in every node of the AST, we obtain a persistent
data structure that efficiently encodes all equivalent expressions. Once such a data structure has been
populated, an extraction step can search for the optimal expression. This approach to term rewriting is
called equality saturation. Unfortunately, equality saturation does not generalise well to graphs [9].

Persistent data structures for rewriting can be combined with CRDTs, distributed data structures that
allow for concurrent edits. Every node maintains a local copy of the data and changes are propagated by
broadcasting edits using a communication protocol such as [4]. Incoming edits are then applied to the
local copy, effectively syncing the data. Importantly, every element in the data structure is immutable and
assigned a globally unique ID (GUID) to avoid edit conflicts. Persistent data structures are particularly
suited as CRDTs as addition is the only modification of the data that must be handled.

https://creativecommons.org/publicdomain/zero/1.0/


2 A CRDT for graph rewriting

Local graph diffs

For a given input graph G, our data structure D stores a hierarchy of local graph diffs of G, that is,
subgraphs of G along with a rewrite for each subgraph. In other words, each diff is given by a set of
vertices and edges (the rewritten graph) as well as a boundary relation that maps the boundary of the diff
to edges in one of its parent diffs. We support three elementary operations on D . These operations are
persistent, i.e. they leave their arguments unchanged and insert new diffs into D :

REWRITE(H,(V ′,E ′),ϕ). Insert a new diff on the same subgraph as H that rewrites it to the new graph
(V ′,E ′). A map ϕ must be provided that maps the boundary nodes in H to new nodes in V ′. This is
used to update the boundary relation of the new diff. The parent of the new diff will be the parent
of H. The new vertices inserted must be given fresh globally unique IDs and the vertices in H are
marked as deleted in the new diff.

MERGEALONG(Hi,H j,e). If Hi and H j are diffs on disjoint subgraphs and share a common boundary
edge e, then insert a new diff on the union of the subgraphs that combines both rewrites. The
resulting boundary relation is the union of the boundary relations minus the edge e. Both Hi and
H j are parents of the new diff.

MERGEWITHPARENT(Hi). Merge the diff Hi into the subgraph of its parent. The new diff will keep
the rewrite of Hi but its subgraph will match the parent of Hi’s.

As new diffs are inserted into D , these additions can be communicated to other nodes with copies of D .
The use of unique IDs and the explicit marking of deleted vertices make it easy to insert any incoming
addition in the local copy of the data structure. In the case where rewrites may not be arbitrary but
correspond to the application of one of a predefined list of rewrite rules, rewrites may be identified by a
rewrite rule ID. Thus, identical rewrites performed by multiple nodes concurrently can be identified and
merged. In this case, a union-find data structure must be used as vertices may be assigned more than one
ID1.

Finally, to speed up pattern matching and rewriting we can keep an index that tracks the inverse
boundary relations: for each edge e in a diff Hi, FINDBOUNDARIES(Hi,e) returns the list of its descen-
dant diffs for which e is a boundary. As we traverse the graph of a diff Hi, we can thus find all other diffs
that can be merged with Hi, until all possible rewrites were found and applied exhaustively.

Conclusion

Using D , graph rewriting can be made local and persistent. Changes on one subgraph can easily be
propagated to distributed nodes and combined with concurrent changes to other parts of the graph. Fur-
thermore, FINDBOUNDARIES queries and MERGEALONG operations enable rewrites that span neigh-
bouring subgraphs: as a result, any sequence of rewrites that is possible on a graph G will be possible to
perform on D . However, only rewrites within a neighbourhood of a diff will be considered for merging.
The branching factor of the search space will thus be reduced, especially for large input graphs G. The
combination of parallelisation and smaller search space should result in speedups in practice.

1There will be at most one ID per concurrent node. Using a conlifct resolution strategy in such cases (e.g. using the smallest
assigned ID) will ensure that the same IDs will be used eventually.



L. Mondada 3

References
[1] Peter E. Hart, Nils J. Nilsson & Bertram Raphael (1968): A Formal Basis for the Heuristic Determina-

tion of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4(2), pp. 100–107,
doi:10.1109/TSSC.1968.300136.

[2] Gerard Huet (1977): Conflunt reductions: Abstract properties and applications to term rewriting sys-
tems. In: 18th Annual Symposium on Foundations of Computer Science (sfcs 1977), pp. 30–45,
doi:10.1109/SFCS.1977.9.

[3] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia & Alex Aiken (2019): TASO: op-
timizing deep learning computation with automatic generation of graph substitutions. In: Proceedings of the
27th ACM Symposium on Operating Systems Principles, SOSP ’19, Association for Computing Machinery,
New York, NY, USA, p. 47–62, doi:10.1145/3341301.3359630.

[4] Giovanna Márk Jelasity, Di Marzo Serugendo, Marie-Pierre Gleizes & Anthony Karageorgos (2011): Gossip,
pp. 139–162. Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-642-17348-6_7.

[5] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim & Joonwon Lee (2011): Replicated abstract data
types: Building blocks for collaborative applications. J. Parallel Distrib. Comput. 71(3), p. 354–368,
doi:10.1016/j.jpdc.2010.12.006.

[6] Ross Tate, Michael Stepp, Zachary Tatlock & Sorin Lerner (2009): Equality saturation: a new approach to
optimization. SIGPLAN Not. 44(1), p. 264–276, doi:10.1145/1594834.1480915.

[7] Ross Tate, Michael Stepp, Zachary Tatlock & Sorin Lerner (2009): Equality saturation: a new approach
to optimization. In: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’09, Association for Computing Machinery, New York, NY, USA, p.
264–276, doi:10.1145/1480881.1480915.

[8] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock & Pavel Panchekha
(2021): egg: Fast and extensible equality saturation. Proc. ACM Program. Lang. 5(POPL),
doi:10.1145/3434304.

[9] Yichen Yang, Mangpo Phitchaya Phothilimtha, Yisu Remy Wang, Max Willsey, Sudip Roy & Jacques Pienaar
(2021): Equality Saturation for Tensor Graph Superoptimization. CoRR abs/2101.01332. arXiv:2101.01332.

[10] Yichao Zhou & Jianyang Zeng (2015): Massively parallel A* search on a GPU. In: Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, AAAI Press, p. 1248–1254,
doi:10.1609/aaai.v29i1.9367.

https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/SFCS.1977.9
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1007/978-3-642-17348-6_7
https://doi.org/10.1016/j.jpdc.2010.12.006
https://doi.org/10.1145/1594834.1480915
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/3434304
https://arxiv.org/abs/2101.01332
https://doi.org/10.1609/aaai.v29i1.9367

