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Achieving the complexity of graph algorithms in conventional languages using graph transformation
rules is challenging due to the cost of graph matching. Previous work demonstrated that with rooted
rules, certain algorithms could be executed in linear time using the graph programming language
GP 2. However, for non-destructive algorithms that retain the structure of input graphs, achieving
linear runtime required the input graphs to be connected. In this paper, we overcome this restric-
tion by enhancing the graph data structure generated by the GP 2 compiler and exploiting this new
structure in programs. As case studies, we present a cycle detection program, a breadth-first search
program (previously achievable only in quadratic time), and a program for numbering connected
components, all running in linear time on all classes of input graphs, both connected and discon-
nected, with arbitrary node degrees. We empirically substantiate the linear time complexity with
timings for various classes of input graphs.

1 Introduction

Designing and implementing languages for rule-based graph rewriting, such as GReAT [1], GROOVE
[8], GrGen.Net [9], Henshin [12], and PORGY [7], poses significant performance challenges. Typically,
programs written in these languages do not achieve the same runtime efficiency as those written in
conventional imperative languages like Java. The primary obstacle is the cost of graph matching, where
matching the left-hand graph L of a rule within a host graph G generally requires time |G||L|, with |X |
denoting the size of graph X . (Since L is fixed, this is a polynomial.) Therefore, linear-time imperative
graph algorithms may exhibit polynomial runtimes when modelled as rule-based graph programs.

To address this issue, the graph programming language GP 2 [11] supports rooted graph transforma-
tion rules, initially proposed by Dörr [6]. This approach involves designating certain nodes as roots and
matching them with roots in the host graphs. Consequently, only the neighbourhoods of host graph roots
need to be searched for matches, which can often be done in constant time under specific (and usually
mild) conditions. The GP 2 compiler [2] maintains a list of pointers to roots in the host graph, facilitating
constant-time access to roots if their number remains bounded throughout the program’s execution. In
[3], fast rules were identified as a class of rooted rules that can be applied in constant time, provided host
graphs contain a bounded number of roots and have a bounded node degree.

The first linear-time graph problem implemented by a GP 2 program with fast rules was 2-colouring.
In [3, 2], it is shown that this program colours connected graphs of bounded degree in linear time.
Since then, the GP 2 compiler has received some major improvements, particularly related to the runtime
graph data structure used by the compiled programs [5]. These improvements made a linear time worst-
case performance possible for a wider class of programs, in some cases even on input graph classes of
unbounded degree. See [4] for an overview.
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Despite this progress, programs that retain the structure of input graphs, such as the aforementioned
2-colouring program, have until now required non-linear runtimes on disconnected graphs. The problem
is that, after a connected component is visited, the number of failed attempts to match a non-visited node
in a different connected component may increase. Consequently, in disconnected graph classes, this
number may grow quadratically in the graph size, leading to a quadratic program runtime. In connected
graph classes, this undesirable behaviour is ruled out because all nodes are reachable from a single
undirected depth-first search.

In this paper, we present an update to the GP 2 compiler which mitigates this performance bottleneck.
In short, the solution is to improve the graph data structure generated by the compiler so that nodes are
stored in separate linked lists based on their marks (red, green, blue, dashed, or unmarked). This allows
the matching algorithm to find a node of a specific mark in constant time. For example, if a red-marked
node is required, a single access to the list of red-marked nodes will either find such a node or determine
that none exists.

In addition to the new graph data structure, a technique is needed to exploit the improved storage in
programs. We first demonstrate in a case study of the acyclicity problem how the new graph representa-
tion allows for a linear runtime. Our program expects connected or disconnected input graphs and either
detects that a graph admits of a cycle or returns a graph isomorphic to the input up to node and edge
marks. Then, we present two other programs that exploit this structure: one numbering the connected
components of a graph, and another carrying out a breadth-first search of a graph. For each program, we
offer empirical benchmarks to substantiate our claims regarding their time complexities.

2 Compiler Enhancements

We refer to [4] for a description of the GP 2 programming language. In this section, we introduce the
modifications to the graph data structure generated by the GP 2 compiler. We first state the motivation
behind the changes.

2.1 Motivation

Consider the program is-discrete from Figure 1.1 The program fails if and only if the input graph is
discrete, that is, it contains no edges. Here, we assume that the input graph is unmarked (nodes and
edges are not coloured, and edges are not dashed). The program is non destructive in that the output
graph is isomorphic to the input graph up to node marks, should it not fail. is-discrete is composed
of a looping procedure followed by a test. The rule mark in the looping procedure marks and roots an
arbitrary unmarked node in the host graph, and isolated checks whether the degree of the node rooted
by mark is 0. Notice that the right-hand side node of the rule isolated is not in the interface; hence, for
it to match, it must satisfy the dangling condition (i.e. have no edge outside the rule incident with it). If
isolated does not apply after an application of mark, a node whose degree is non-zero was found and
the looping procedure breaks. The rule root checks if a root exists in the host graph, which can happen
if and only if isolated failed to apply.

The GP 2 compiler, prior to this article, matched the rule mark with a complexity of O(n), with n
being the number of nodes in the host graph at the application of mark. Indeed, in order to find an

1Node labels such as x are written inside nodes, whereas small integers below nodes are their identifiers. Nodes without
identifiers on the left-hand side are to be deleted; nodes without identifiers on the right-hand side are to be added. Nodes with
the same identifier on each side are to be kept.
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Main = (mark; try isolated else break)!; if root then fail

mark(x:list)

x
1

⇒ x
1

isolated(x:list)

x ⇒ x

root(x:list)

x
1

⇒ x
1

Figure 1: The non-destructive program is-discrete.

unmarked node, the compiler had to iterate through a unique linked list consisting of all nodes in the host
graph. As a result, since the looping procedure can be invoked at most n times, the overall complexity of
is-concrete was O(n2), as empirically evidenced in Figure 2.
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Figure 2: Measured performance of the program is-discrete on discrete graphs under the previous
and the new compilers.

2.2 New Graph Data Structure

To address the problem described in Subsection 2.1, we modified the internal graph data structure the
GP 2 compiler generates. We employ the terms unmodified compiler and modified compiler to refer to
the versions prior to and after this paper, respectively.

The unmodified compiler stored the host’s graph data structure as one linked list containing of every
node in the graph, with each node storing a two-dimensional array where each cell stored a linked list
consisting of incident edges of a particular mark and orientation relative to the node. This model allowed
for constant access to edges of relevant orientations and marks, in contrast to an earlier model which
stored, for each node, all edges incident with it in two linked lists: one for incoming edges and one
for outgoing edges [5]. One major problem with the structure used to store nodes in the unmodified
compiler is the unnecessary lookups the matching algorithm carried out to find a match for a node in
the host graph, especially when there existed other nodes whose marks could not match. For instance,
in order to match node 1 of the rule mark in is-discrete (Figure 1), the matching algorithm would
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Procedure Description Complexity
alreadyMatched Test if the given item has been matched in the host graph. O(1)
clearMatched Clear the is matched flag for a given item. O(1)
setMatched Set the is matched flag for a given item. O(1)
firstHostNode(m) Fetch the first node of mark m in the host graph. O(1)
nextHostNode(m) Given a node of mark m, fetch the next node of mark m in the host graph. O(1)
firstHostRootNode Fetch the first root node in the host graph. O(1)
nextHostRootNode Given a root node, fetch the next root node in the host graph. O(1)
firstInEdge(m) Given a node, fetch the first incoming edge of mark m. O(1)
nextInEdge(m) Given a node and an edge of mark m, fetch the next incoming edge of mark m. O(1)
firstOutEdge(m) Given a node, fetch the first outgoing edge of mark m. O(1)
nextOutEdge(m) Given a node and an edge of mark m, fetch the next outgoing edge of mark m. O(1)
firstLoop(m) Given a node, fetch the first loop edge of mark m. O(1)
nextLoop(m) Given a node and an edge of mark m, fetch the next loop edge of mark m. O(1)
getInDegree Given a node, fetch its incoming degree. O(1)
getOutDegree Given a node, fetch its outgoing degree. O(1)
getMark Given a node or edge, fetch its mark. O(1)
isRooted Given a node, determine if it is rooted. O(1)
getSource Given an edge, fetch the source node. O(1)
getTarget Given an edge, fetch the target node. O(1)
parseInputGraph Parse and load the input graph into memory: the host graph. O(n)
printHostGraph Write the current host graph state as output. O(n)

Figure 3: Updated runtime complexity assumptions. Modified procedures are highlighted in grey. n is
the size of the input.

have to iterate through a single linked list consisting of every node in the host graph, including those
of incompatible marks (such as red-marked nodes). Hence, in the case where every node in the host
graph were red-marked beside an unmarked one, the matching algorithm could, in the worst case, look
up (i.e. attempt matching with) every red-marked node in the host graph until it finally reaches the
unmarked node. It is clear that under such a model, matching mark is linear, provided the number of
non-red-marked nodes in the class under which the host graph falls is not bound to a constant.

A solution presented in this paper, supported by the modified compiler, is the storage of nodes in
several linked lists, each consisting of nodes of a particular, distinct mark (unmarked nodes are stored
in a distinct linked list). Each linked list is stored in a unique cell of a global one-dimensional array,
allowing for constant access to the first element of each linked list. This model permits the rule mark
to match in constant time, since the matching algorithm need not iterate through nodes of incompatible
marks. Indeed, the matching algorithm directly inspects the linked list consisting of all red-marked nodes
in the host graph. Since the rule mark allows for any red-marked node of arbitrary label to be matched,
the first element found in the linked list by the matching algorithm matches successfully. As a result
of these changes, the time compelexity of the program is-discrete under the modified compiler is
reduced down to O(n). Figure 2 highlights the difference in runtimes of the program is-discrete run
under both compilers.

To reason about programs, it is crucial to lay down assumptions on the complexity of certain ele-
mentary operations. We define the search plan of a rule as the procedure generated to compute a match
satisfying the application condition, should one exist. Figure 3 showcases the complexity assumptions
of the basic procedures of the search plan, adapted from [4]. The grey rows indicate existing procedures
updated by the changes introduced in this paper. The empirical evidence collated from various case stud-
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ies showcased in this paper corroborates the complexity assumptions implied by the changes brought to
the modified compiler.

3 Case Study: Recognising Acyclicity

Cycle detection is a foundational problem in graph algorithms. Several GP 2 programs were previously
proposed to decide whether a given directed graph is acyclic (i.e. contains no directed cycle), however,
they were either restricted to binary DAGs (directed acyclic graphs wherein each node is incident to at
most two outgoing edges) or destructive, in that they partially or totally deleted the input graph [2, 4].

3.1 Program

The program is-dag from Figure 4 recognises acylic graphs with respect to the following specifications.

Input: An arbitrarily-labelled GP 2 host graph such that:

1. every node is grey-marked,
2. every node is non-rooted, and
3. every edge is unmarked.

Output: A host graph isomorphic to the input graph up to marks if the input graph is acyclic,
otherwise the program fails.

It is claimed that is-dag is non-destructive; however, a cyclic input graph results in the invocation of the
fail command, returning no output graph. Nonetheless, the program can easily be turned completely
non-destructive by replacing the fail command in the procedure Check by a rule creating a distinct flag
(such as an unmarked node), signalling the existence of a cycle. Figure 5 illustrates a sample execution
of the program on a cyclic input graph.

The program is-dag implements a directed depth-first search of the host graph by marking visited
nodes in two distinct colours: red and blue. A red mark on a node indicates that it is being visited by
the depth-first search. Visualising the DFS (depth-first search) as modelled with a stack, nodes inside
the stack are marked red. A blue mark on a node indicates that it was previously in the stack and was
popped from it, meaning that it no longer requires further visitation. The head node of the stack is rooted
(an invariant of the program is that there is at most one root in the host graph throughout the execution
of is-dag). A cycle exists if and only if, during the DFS, an edge from the rooted node to a red-marked
node is found. Indeed, let u be the root and v, a red-marked node adjacent to u via an edge from u to v.
Since v is marked red, it implies that it is being visited (therefore part of the stack) and that there exists
a directed path from v to u. Since there exists an edge from u to v, we obtain a cycle.

The program first calls a looping procedure in Main: (init; DFS!; try unroot else break)!.
The rule init acts as an initialiser: it selects an arbitrary node to start a directed DFS from. Then,
the looping procedure DFS! is invoked. The purpose of the procedure DFS is to move the root in a
DFS fashion throughout the host graph. The procedure is structured around a try-else construct. If
first tries to determine if there is any unprocessed edge (i.e. unmarked edge) incident with the root by
invoking the rule next_edge (the magenta colour in the visual representations of the programs in this
paper denote the wildcard mark any). Should one be found, the rule marks the edge red so that it can be
uniquely processed by the rest of the procedure. If none is found, the root can no longer move forward
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Main = (init; DFS!; try unroot else break)!; Check
DFS = try next_edge then (try {move, ignore} else (set_flag; break))

else (try loop; try back else break)
Check = if flag then fail

init(x:list)

x
1

⇒ x
1

unroot(x:list)

x
1

⇒ x
1

set_flag(x:list)

x
1

⇒ x
1

flag(x:list)

x
1

⇒ x
1

next_edge(x,y,z:list)

x
1

y
2

⇒ x
1

y
2

z z
ignore(x,y,z:list)

x
1

y
2

⇒ x
1

y
2

z z

move(x,y,z:list)

x
1

y
2

⇒ x
1

y
2

z z
back(x,y,z:list)

x
1

y
2

⇒ x
1

y
2

z z

loop(x,z:list)

x
1

⇒ x
1z z

Figure 4: The program is-dag.

and the else-statement (on the next line) is invoked instead. Back to next_edge; after a successful
application of the rule, there are three possible scenarios: the root is adjacent to (1) a grey-marked node,
(2) a blue-marked node, or (3) a red-marked node. If the root is adjacent to a grey-marked node, the rule
move moves the root forward to that node, marks it red and dashes the traversed edge. Dashed edges
represent the ongoing path followed by the directed DFS. If the root is adjacent to a blue-marked node,
the edge is ignored by the rule ignore marking it blue, so that it does not match with next_edge any
further. If the root is adjacent to a red-marked node, no rule in the ruleset {move, ignore} applies,
hence invoking the rule set_flag, which marks the rooted node green, indicating the existence of a
cycle. Prior to applying next_edge, if no unmarked edge is incident with the root, the latter rule fails,
and (try loop; try back else break) is invoked. The rule loop is first tried to ensure that the
root does not admit of a loop. If a loop is found, the rule turns the rooted node green, akin to set_flag.
The rule back implements the pop operation by backtracking the root via an incoming dashed edge. If
no incoming dashed edge is found, it implies that the rooted node is the only element of the stack; hence,
the break command is called, terminating the looping procedure DFS!.

Following the termination of DFS!, the rule unroot is tried in Main to ensure that no flag was set
during the execution of DFS and to unroot the sole red node of the stack. The only rules remarking (i.e.
changing the marks of) rooted nodes in DFS are set_flag and loop, which are applied if and only if a
cycle was found. Therefore, a failure to apply unroot entails the existence of a cycle. Given that input
graphs can be disconnected and the DFS is directed, all nodes are not necessarily visited after an initial
DFS from an arbitrary node. Hence, the rule init is called again following a successful application of
unroot. The looping procedure terminates when init no longer applies, indicating the visitation of all
nodes, or when unroot fails, indicating the discovery of a cycle.
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⇒init ⇒next_edge ⇒move

⇓back

4
DFS ⇐

⇓flag

init ⇐ unroot ⇐

Failure

Figure 5: Sample execution of is-dag on a cyclic graph.

Finally, the procedure Check is invoked, checking whether a flag exists in the host graph. Should one
exist, a cycle was found and the command fail is called, failing the program. Otherwise, the program
terminates and returns the host graph, isomorphic to the input graph up to marks.

3.2 Time Complexity

All rules of the program is-dag apply in constant time under the complexity assumptions of the modified
GP 2 compiler (Figure 3). The rule init applies in constant time since any arbitrarily labelled grey-
marked node is a match for the rule. As the generated graph data structure keeps a node linked list
separate to each mark, the matching algorithm can select a grey-marked node in constant time regardless
of the number of non-grey-marked nodes in the host graph at the time of the rule application.

It can be observed that a node and an edge never repeat their marks. Since all rules, except flag
called at most once in Check, remark at least one element, the overall program runtime is linear in the
size of the graph, i.e. O(n+m) with n and m being the number of nodes and edges in the input graph,
respectively. To support that claim, we have collected empirical timing results, showcased in Figure 13,
for various graph classes of bounded (Figures 6, 7, 9, 10 and 12) and unbounded degree (Figure 12).

Figure 6: Grid graph. Figure 7: Binary tree. Figure 8: Star graph. Figure 9: Cycle graph.

Figure 10: Linked list. Figure 11: Discrete graph. Figure 12: k k-star graphs.
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Figure 13: Measured performance of the program is-dag under the modified compiler.

4 Case Study: Numbering Connected Components

A clear advantage of the new data structure is the ability to match an arbitrarily-labelled node of a
particular mark (or determine that none exists) in constant time. A natural choice of a program that can
be constructed under that paradigm is one that numbers all connected components of an input graph.

The program component-numbering from Figure 14 appends a number to the list of each node of
an input graph unique to the connected component the node belongs to with respect to the following
specifications.

Input: An arbitrarily-labelled GP 2 host graph such that:

1. every node is grey-marked,
2. every node is non-rooted, and
3. every edge is unmarked.

Output: A host graph structually isomorphic to the input graph where a number is appended to
the list of each node, denoting the unique identifier of the connected component it belongs to.

4.1 Program

The program component-numbering works by first evoking the rule init, which marks an arbitrarily-
labelled node grey, roots it and appends 1 (first component identifier) to its list label. If the rule fails
to match, the graph is empty and the program terminates, given that unroot fails. The procedure DFS
works analogously to that of is-dag, except it is undirected. The rule move propagates the identifier.

The first looping body DFS! propagates the numbering 1 in a single connected component of the
graph. The next looping procedure repeats the process, except it invokes next instead of init. The rule
next simply unroots the current rooted node, roots another unvisited (grey-marked) node and appends
the identifier of the previous rooted node, incremented by 1. Once all unvisited nodes are exhausted, the
rule next fails to match and the break command is called. The rule unroot unroots the sole root of the
graph.
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Main = try init then DFS!; (try next then DFS! else break)!; try unroot
DFS = (next_edge; {move, ignore})!; try back else break

init(x:list)

x
1

⇒ x:1
1

unroot(x:list)

x
1

⇒ x
1

next(x,y:list,n:int)

x:n
1

y
1

⇒ x:n
1

y:n+1
1

next_edge(x,y,z:list)

x
1

y
2

⇒ x
1

y
2

z z
ignore(x,y,z:list)

x
1

y
2

⇒ x
1

y
2

z z

move(x,y,z:list,i:int)

x:i
1

y
2

⇒ x:i
1

y:i
2

z z
back(x,y,z:list)

x
1

y
2

⇒ x
1

y
2

z z

Figure 14: The program component-numbering.

4.2 Time Complexity

The time complexity of the program component-numbering is linear. That is largely attributed to
the fact that init and next match in constant time, which would have not been possible under the
unmodified compiler. Figure 15 offers corroborative evidence. As expected, the program exhibits a
linear runtime on discrete graphs, which are disconnected and require n−1 calls of the rule next, with
n being the number of nodes.
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Figure 15: Measured performance of the program component-numbering under the modified compiler.
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5 Case Study: Breadth First Search

The problem of traversing a graph in a breadth-first search (BFS) fashion in GP 2 is interesting, as
previous techniques used to traverse graphs non-destructively in linear time involved variations of a
depth-first search. Bak proposed, in his PhD thesis [2], an implementation of the BFS algorithm in GP 2.
However, that program ran in quadratic time. That is due to there being no way, prior to the compiler
enhancement of this paper, to find a node to expand from in constant time, given that the next node to
expand from is not necessarily adjacent to the one being expanded during a BFS.

Main = BFS!
BFS = try mark else break;

mark!; (root; (next_edge; try move else ignore)!; unroot)!

root(x:list)

x
1

⇒ x
1

unroot(x:list)

x
1

⇒ x
1

mark(x:list)

x
1

⇒ x
1

next_edge(x,y,z:list)

x
1

y
2

⇒ x
1

y
2

z z
ignore(x,y,z:list)

x
1

y
2

⇒ x
1

y
2

z z

move(x,y,z:list)

x
1

y
2

⇒ x
1

y
2

z z

Figure 16: The program bfs.

In this section, we present the program bfs, capable of carrying out a breadth-first search of a graph
in linear time with respect to its size and the following specifications.

Input: A non-empty arbitrarily-labelled GP 2 host graph such that:

1. one node is green and every other node is grey-marked,
2. every node is non-rooted, and
3. every edge is unmarked.

Output: A host graph structually isomorphic to the input graph where all nodes and edges are
blue-marked.

5.1 Program

The program exploits the advantages of the compiler modifications so as to find the next node to expand
from in constant time. The program bfs consists of a looping procedure, BFS!, which marks all green
nodes in the host graph red and, subsequently, marks all grey nodes directedly adjacent to the red nodes
green. Once a red node has been expanded from, it is marked blue.

Intuitively, at the beginning of the execution of BFS, the program seeks to mark all nodes directedly
adjacent to green-marked. Firstly, the rule mark is applied as long as possible to mark all green-marked
nodes red. Then, for as long as possible, the program picks some red node (which was previously green)
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with the ryke root, and expands from it as long as possible. The nested looping procedure ends when
next_edge is no longer applicable, implying that there is no expansion left from the node picked. The
rule unroot then marks the chosen node blue, indicating that it was fully processed, and moves on to the
next red-marked node. The upper parenthetical looping procedure within BFS! terminates when root
no longer applies, indicating that all nodes that were previously green at the beginning of BFS have been
processed.

5.2 Time Complexity

The program bfs runs in linear time with respect to the size of the graph (i.e. the number of nodes and
edges). Discrete graphs exhibit a seemingly constant time complexity since they consist of connected
components of at most one node.
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Figure 17: Measured performance of the program bfs under the modified compiler.

6 Conclusion

We have demonstrated an approach to implement various depth-first search-based algorithms for dis-
connected graph classes using a rule-based graph program that achieves linear runtime on input graphs
with arbitrary node degrees. Addressing the challenge of disconnected input graphs has been an open
problem since the publication of the first paper on rooted graph transformation [3], as well as a limit-
ing issue for colouring programs in [4], which required input graphs to be connected. Until now, only
certain reduction programs that destroy their input graphs could be designed to run in linear time on
unbounded-degree and disconnected graphs [4].

Our approach involves both enhancing the graph data structure generated by the GP 2 compiler and
developing a technique to leverage this new representation in programs. Previously, the graph data
structure in the C program generated by the compiler stored all nodes in the host graph in a single linked
list. However, when nodes had different marks, searches within this list became linear-time operations,
hindering constant-time rule matching. The new data structure allows for finding a node with a particular
mark in constant time.
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We speculate that it will eventually be possible to implement virtually all graph- and tree-based
data structures with their conventional time complexities as GP 2 programs. This includes structures
such as heap data structures and AVL trees. Such implementations would enable faster GP 2 versions
of conventional DFS-based algorithms from the literature that utilise advanced data structures, such as
Dijkstra’s algorithm.
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