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Graph rewriting is a popular tool for the optimisation and modification of graph expressions in do-
mains such as compilers, machine learning and quantum computing. The underlying data structures
are often port graphs—graphs with labels at edge endpoints. A pre-requisite for graph rewriting is
the ability to find graph patterns. We propose a new solution to pattern matching in port graphs.
Its novelty lies in the use of a pre-computed data structure that makes the pattern matching runtime
complexity independent of the number of patterns. This offers a significant advantage over existing
solutions for use cases with large sets of small patterns.

Our approach is particularly well-suited for quantum superoptimisation. We provide an imple-
mentation and benchmarks showing that our algorithm offers a 20x speedup over current implemen-
tations on a dataset of 10000 real world patterns describing quantum circuits.

1 Introduction

Optimisation of computation graphs is a long-standing problem in computer science that is seeing re-
newed interest in the compiler [12], machine learning (ML) [8, 5] and quantum computing communi-
ties [20, 19]. In all of these domains, graphs encode computations that are either expensive to execute or
that are evaluated repeatedly over many iterations, making graph optimisation a primary concern.

Domain-specific heuristics are the most common approach in compiler optimisations [14, 17]— a
more flexible alternative are optimisation engines based on rewrite rules, describing the allowable graph
transformations [3, 4]. Given a computation graph as input, we find a sequence of rewrite rules that
transform the input into a computation graph with minimal cost. One successful approach in both ML
and quantum computing has been to use automatically generated rules, scaling to using hundreds and
even thousands of rules [20, 8, 19].

In the implementations cited above, pattern matching is carried out separately for each pattern, be-
coming a bottleneck for large rule sets. We present an algorithm for pattern matching on computation
graphs that uses a pre-computed data structure to return all pattern matches in a single query. The set
of rewrite rules are directly encoded in this data structure: after a one-time cost for construction, pattern
matching queries can be answered in running time independent of the number of rewrite rules.

We provide a novel solution to pattern matching on port graphs [6] with a runtime complexity in-
dependent of the number of patterns. As a trade-off, the runtime may be exponential in the size of the
patterns. For pattern sizes of practical interest in quantum computing, however, the resulting costs are
manageable: the exponential scaling is in the number of qubits of the patterns, which is bounded by a
single digit constant in relevant rewriting use cases [20].

The solution we propose can be seen as an adaptation of Rete networks [7] to the special case of
port graph pattern matching. The additional structure obtained from restricting our considerations to
graphs results in a simplified network design and crucially, allows us to derive worst-case asymptotic
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Figure 1: Pattern matching on a port graph is reduced to the problem of matching on trees. A subset of
vertices are chosen as anchor sets (left). A neighbourhood of the anchors is extracted and represented as
a tree (middle). Finally, pattern matches are found by searching for matching subtrees (right).

runtime bounds—overcoming a key limitation of Rete. A similar problem is also studied in the context
of multiple-query optimisation for database queries [16, 15], but has limited itself to developing caching
strategies and search heuristics for specific use cases. Finally, using a pre-compiled data structure for
pattern matching was already proposed in [13]. However, with a nΘ(m) space complexity—n is the input
size and m the pattern size—it is a poor candidate for pattern matching on large graphs, even for small
patterns.

2 Paper overview

Taking advantage of port labels on graph data structures leads to a speedup for pattern matching over
the general case [10]. Port labels are data assigned to every endpoint of the edges of a graph, such
that the labels at every vertex are unique. Such labels can for instance be assigned to processes with
distinguishable inputs and outputs: a function that maps inputs (x1, . . . ,xn) to output (y1, . . . ,ym) can
assign labels i1 to in and o1 to om to its incident edges in the computation graph. The resulting data
structure is a port graph [6].

Main idea. For a set of ℓ pattern port graphs P1, . . . ,Pℓ and a subject port graph G, we solve the problem
of finding all pattern embeddings Pi → G. We distinguish two separate stages during pattern matching:

Pre-computation stage. Compile the set of patterns into a data structure designed to speed up later
queries. In the process, we select for every pattern Pi an anchor set, i.e. a subset Xi of vertices in Pi.
The input port graph G is not required at this stage and, hence, this computation is done only once
for a given collection of patterns P1, . . . ,Pℓ.

Fast pattern matching stage. Given G, compute for each Pi all embeddings Pi → G. This is achieved
by enumerating all possible images X in G of pattern anchor sets X1, . . . ,Xℓ and finding the subset of
patterns i for which the map Xi → X can be extended to a valid pattern embedding of Pi in G.

The pattern matching stage can be decomposed into known problems by showing that embeddings with
fixed anchor sets can be equivalently seen as rooted tree embeddings. The enumeration of valid choices
of X in G then becomes a tree counting argument. Meanwhile, the set of patterns that embed in G for a
fixed Xi → X is obtained from a pre-computed decision tree. An overview is presented in fig. 1.
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Results and contributions. Our first major contribution is a pattern matching algorithm for port graphs
with a runtime complexity bound independent of the number of patterns being matched, achieved using
a one-off pre-computation. The main complexity result is expressed in terms of maximal pattern width
w and depth d, two measures of pattern size defined in section 3.1. These are directly related to the
tree representation illustrated in fig. 1: width is equal to the size of the anchor set (proposition 4) and
depth is at most twice the tree height (eq. (7)). We assume bounded degree graphs (the complete list of
assumptions is given in section 3.2) and we use the graph size |G| to refer to the number of vertices in G.

Theorem 1. Let P1, . . . ,Pℓ be patterns with at most width w and depth d. The pre-computation runs in
time and space complexity

O
(
(d · ℓ)w · ℓ+ ℓ ·w2 ·d

)
.

For any subject port graph G, the pre-computed prefix tree can be used to find all pattern embeddings
Pi → G in time

O
(
|G| · cw

w1/2
·d
)

(1)

where c = 6.75 is a constant.

The runtime complexity is dominated by an exponential scaling in maximal pattern width w. Meanwhile,
the advantage of our approach over matching one pattern at a time grows with the number of patterns ℓ.
It is thus of particular interest for matching numerous small width patterns.

We illustrate this point by comparing our approach to a standard algorithm that matches one pattern
at a time [10], with runtime complexity O(ℓ · |P| · |G|). Using |P| ≤ w · d (shown in section 3.1) and
comparing to eq. (1), we thus have a speedup in the regime Θ(cw/w3/2) < ℓ. On the other hand, ℓ is
upper bounded by the maximum number Nw,d of patterns of bounded width and depth. Using a crude
lower-bound for Nw,d derived in appendix B, we obtain a computational advantage for our approach when

Θ

(
cw

w3/2

)
< ℓ <

( w
2e

)Θ(wd)
≤ Nw,d . (2)

Our second major contribution is an efficient Rust library for port graph pattern matching1. We present
benchmarks on a real world dataset of 10000 quantum circuits in section 5, showing a 20× speedup over
a leading C++ implementation of pattern matching for quantum circuits.

3 Preliminaries

3.1 Definitions

A port graph G is a tuple G := (V,E,P,λ ) where (V,E) is an undirected multigraph, P is a finite set
of port labels and λ : V ×P ⇀ E ∪ {ω} is a partial function that on its domain of definition either
assigns port labels to edges or marks them as open ports using a specially dedicated symbol ω . The
port graph is valid if λ (v, p) = λ (v, p′) = e ∈ E if and only if e is an edge incident in v and p = p′. We
then say that e is attached to v at port p. The domain of definition of λ (v, ·) is the set of port labels
at vertex v, written ports(v). The degree of v is deg(v) = |ports(v)|. It will often be convenient to
leave the definition of λ implicit and for an edge e = λ (v, p) = λ (v′, p′), to write it instead as the set
e = {(v, p),(v′, p′)}. Additionally, we may consider port graphs with labelled vertices, determined by
vertex label maps V → W , where W is a set of labels.

1portmatching: https://github.com/lmondada/portmatching

https://github.com/lmondada/portmatching
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Width, depth and linear paths. Fix a partition of port labels P into pairs of elements (and an addi-
tional singleton set if |P| is odd). This defines an equivalence relation ∼ where p ∼ p′ if p and p′ are
in the same partition. The relation ∼ defines a partition of the edges of a port graph into paths. A linear
path in a port graph G with edges E and port labels in P is a path P ⊆ E∗ such that for every vertex v in
G and ports p, p′ ∈ P satisfying p ∼ p′,

λ (v, p) ∈ P =⇒ λ (v, p′) ∈ P∪{ω}. (3)

From a single edge in G, a linear path can be constructed uniquely by repeatedly appending edges to the
path so that (3) is satisfied. The linear path decomposition of G is the unique partition of the edges of G
into linear paths. The width width(G) of G is the number of linear paths in this decomposition. The depth
depth(G) of G is the length of the longest linear path in G. Every edge is on exactly one linear path,
while vertices may be on zero, one or several linear paths. We have always |G| ≤ width(G) ·depth(G).

Patterns and embeddings. A pattern is a connected port graph. A pattern embedding (or just embed-
ding) ϕ : P → G from a pattern P = (VP,EP,P,λP) to a subject port graph G = (V,E,P,λ ), both with
identical port label sets, is given by an injective vertex map ϕV : VP → V such that λP(v, p) is defined if
and only if λ (ϕV (v), p) is defined and the edge map ϕE : EP → E defined as

ϕE(e) = λ (ϕV (v), p) for (v, p) ∈V ×P s.t. λP(v, p) = e (4)

is well-defined and injective. Finally, if the pattern and port graphs have node labels VP → W and
V → W , then we also require that pattern embeddings preserve those.

3.2 Simplifying assumptions

We list here a series of assumptions made throughout our argument. They represent a restriction from
the most general case but we do not find that they restrict the usefulness of the result in practice. We
show in section 3.3 that these assumptions hold in the case of quantum circuits. Moreover, as discussed
in section 5, none of these assumptions are required for the implementation, and we have not observed
any impact on performance when lifting them in practice, so we conjecture that these assumptions can
be loosened and our results generalised.

1. All graphs and patterns are of bounded maximum degree ∆.

2. There is no linear path that forms a cycle.

3. All pattern embeddings ϕ : P → G must be convex, i.e. for every subgraph H ⊆ G that contains
the image of P, ϕ(P)⊆ H, it holds that width(P)≤ width(H).

Note also that eq. (4) requires that the degree of a vertex v in P is also preserved deg(v) = deg(ϕ(v)).
Importantly, a pattern embedding may map a vertex with open port p to a vertex in the subject graph that
has an edge attached to port p.

We will further simplify the problem by making choices of presentation that do not imply any loss
of generality. First of all, we will assume that all vertices are on at most two linear paths (and thus in
particular ∆ = 4). Vertices on k > 2 linear paths can always be broken up into a composition of k− 1
vertices, each on two linear paths as follows:

A =
A1

A2

··
·

··
·

Ak−1

··
·

··
·



L. Mondada and P. Andrés-Martínez 5

This transformation leaves graph width unchanged but may multiply the graph depth by up to a factor ∆.
We can then fix the set of port labels to the set P = {i1, i2,o1,o2} with a total order ≤ on P2. We fix
the partition of P into pairs of elements given by ik ∼ ok for k ∈ {1,2}. We also enforce that at every
vertex v, the set of ports ports(v) is partitioned by ∼ into ⌊ports(v)/2⌋ pairs of elements and at most
one singleton set. This can always be achieved by relabelling vertex ports. Finally, we assume that all
patterns have the same width w and depth d, are connected port graphs and have at least 2 vertices.

Using these assumptions we can obtain the following notable bound on graph width.

Proposition 2. Let G be a port graph with nodd vertices of odd degree and nω open ports. Then the graph
width of G is at most ⌊(nodd +nω)/2⌋.

The proof is in the appendix A.1.

Rooted paths ordering. The total order on P also induces a total order on the paths e1 · · ·ek ∈ E∗ in G
that start in the same vertex r ∈ e1: the paths are equivalently described by a string in P∗, the sequence
of ports of e1, . . . ,ek, which we order using the lexicographical ordering on strings. For every vertex
v in G there is thus a unique smallest path from r to v in G that is invariant under isomoprhism of the
underlying graph (i.e. relabelling of the vertex set).

3.3 Quantum Circuits

We see pattern matching for quantum circuits as one of the main applications of our results. We therefore
choose to introduce here the quantum circuit syntax as a motivation and illustration of the port graph
formalism. Similar data structures are also in use in other parts of compilation science, variously referred
to as circuits, computation graphs or dataflow graphs. Readers familiar with port graphs or uninterested
in the application in quantum computing may skip directly to the definitions of section 3.1.

The set of operations in a quantum circuit is called the gate set of the computation and forms the set
of node weights of the port graph. To every element of the gate set, called a gate type, is associated a gate
arity. A gate with gate type of arity n has n incoming port labels ik and n outgoing port labels ok—by
our assumptions we thus assume 1 ≤ n ≤ 2. Edges always connect outgoing to incoming labels, and the
directed port graph that results from these edge orientations is acyclic. A quantum circuit has q qubits if
it has q outgoing and q incoming open ports: the inputs and outputs of the circuit.

All assumptions made in section 3.2 can be easily verified for quantum circuits and in fact will also
apply to most computation graphs more generally. Indeed:

1. Bounded degree is a direct consequence of a having a fixed set of gate types.

2. For any directed acyclic computation, using port labels in ik for incoming ports and ok for outgoing
labels will always result in non-cyclic linear paths.

3. Similarly, convexity is a natural restriction in the context of rewriting systems for acyclic digraphs,
as it ensures that the application of a rewrite rule does not introduce a cycle in the graph.

Using the ik ∼ ok port label partition, linear paths in a quantum circuit correspond to the paths of gates
along a single qubit. For applications to quantum circuits, we can thus bound graph width and depth as
follows:

Proposition 3. The port graph G of a quantum circuit with q qubit and at most d gates on any one qubit
has width q and depth d.

Some further considerations on applying our work to quantum circuits are discussed in appendix C.
2Any total order will work, e.g. i1 ≤ i2 ≤ o1 ≤ o2.



6 Scalable Pattern Matching in Computation Graphs

3.4 Pattern Matching

In our pattern matching task, given a subject port graph G and a collection of port graphs P1, . . . ,Pℓ, we
must find all pattern embeddings

{ϕ : Pi → G | 1 ≤ i ≤ ℓ s.t. ϕ is a pattern embedding}. (5)

Finding pattern embeddings in port graphs is a simple problem already studied in other contexts [9, 10].
As a result of eq. (4), for every vertex r in P and rG in G there can be at most one embedding P → G
that maps r to rG: for v ̸= r in P, there is a path in P from r to v which, viewed as a sequence of port
labels, maps uniquely to a path in G starting at rG and ending in the image of v. For a choice of r in P it
is therefore sufficient to consider every posible image rG in G to find all embeddings P → G.

We are however interested in the regime where the number of patterns ℓ may be large and pattern
matching is performed many times for the same set of patterns. For this scenario it makes sense to
proceed in two steps and introduce pattern matching with pre-computation. Given patterns P1, . . .Pℓ, we
first produce a pattern matcher, a program whose representation can be stored to disk. In a second step,
a subject port graph G is passed to the pattern matcher, which computes the set (5). We are interested in
two properties of the solution:

• What is the complexity of pattern matching on input G given such a pattern matcher?

• What is the time complexity of generating a pattern matcher given patterns, and what is the size of
the pattern matcher that is produced?

The answer to the first question is our main concern: for a fixed collection of patterns, this will determine
the runtime to obtain all pattern embeddings given an input diagram. The second question, on the other
hand, primarily concerns a one-off pre-computation step that only needs to be performed once for any
set of patterns. In practice, this may also impinge on the first question, if the matcher does not fit into
RAM and/or CPU cache.

4 Algorithm description

4.1 Canonical Tree Representation

Connected port graphs admit an equivalent representation as trees, which we will use for matching.

Split Graphs. Let G be a connected port graph with vertices V and consider the linear path decompo-
sition of G. In this decomposition every vertex v in G must be on one or more linear paths. We mark a
subset X ⊆V of vertices of G as ‘immutable’ and split every other vertex v ∈V \X into multiple vertices,
rewiring the edges in such a way that all vertices not in X are now on exactly one linear path. We call the
graph thus obtained the X-split graph of G, and write it splitX(G). Figure 2 shows an example of a graph
and its split graph. Formally, the split graph can be characterised using an equivalence relation ≡ given
by

(v, p)≡ (v′, p′) ⇔ v = v′∧ (v ∈ X ∨ p ∼ p′) (6)

The vertices of the split graph are the equivalence classes of ≡ and the edges are obtained by mapping
the edges of G one to one: two vertices in the X-split graph are connected by an edge if and only if there
is an edge in G between some elements of their equivalence classes. Note that if the anchor set X is too
small, splitX(G) may not be connected; e.g. if X = ∅ there would be width(G) connected components,
one per linear path.
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Figure 2: A port graph and its linear path decomposition (coloured edges) on the left. On the right, the
split graph resulting from the choice of anchors X = {A,D}. We use the circuits convention, i.e. port
labels are partitioned into linear paths using the relation ik ∼ ok.

A recovery of the original port graph G given splitX(G) is made possible by adding vertex labels
to the split graph that identify split vertices. In the following, split graphs are always rooted trees,
i.e. connected acyclic graphs with a chosen root vertex. Using paths of port labels we obtain a vertex
labelling that is invariant under pattern embedding. This is discussed in more details in the context of the
CT representation in appendix D.

Anchor sets. If splitX(G) is connected and acyclic, we say that X is an anchor set of G and call the
vertices in X anchor vertices. If width(G) > 1, then every linear path in G must contain at least one
anchor vertex. A set of width(G) anchors always exists and can be computed constructively:
Proposition 4. For a connected port graph G of width w and depth d and for a vertex r of G, listing 1
returns an anchor set of w vertices; we call this the set of canonical anchors. Its runtime is O(w2 ·d).
The proof is in appendix A.2. Note that the code given assumes that the linear paths of G are already
computed. These can be computed at the beginning of the computation in time linear in the graph size—
and thus do not affect the overall asymptotic complexity. As a direct consequence we have the following:

Corollary 5. For a port graph G and root rG in G: width(G) = |CANONICALANCHORS(G,rG)|.

CT representation. We call the tree splitX(G) obtained from the canonical anchors, along with the
choice of root r, the canonical tree (CT) representation of G. For simplicity, we will assume that the
root is chosen such that it is on a single linear path3. Non-root internal nodes with more than one child
are contained in the set of anchor vertices of G, every leaf is at most a height depth(G) below the nearest
anchor and there is at least one leaf a distance depth(G) from the nearest anchor. As a consequence the
CT tree width tw and height th can be bound by

tw ≤ (∆−2) ·width(G) = 2 ·width(G) and depth(G)/2 ≤ th ≤ width(G) ·depth(G), (7)

where ∆ = 4 is the maximum degree of G. Using CT representations of patterns simplifies the pattern
matching problem for three reasons:

• Connected port graphs are uniquely characterised by their CT representation, i.e. there is an injec-
tive map from patterns with a choice of root to their CT representation.

• Every vertex in the CT representation is either the root vertex or it is uniquely identified by the
path to it from the root. Paths can be defined by port labels, which are invariant under pattern
embeddings.

• Rooted trees are uniquely characterised by a partition of their edges into paths, which can in turn
be encoded as strings. See fig. 3 for an example.

The properties of the CT representation is discussed in more details in appendix D.
3We can ensure that such a root always exists for example by adding dummy vertices on every edge.
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Listing 1: Finding the set of canonical anchors. CANONICALANCHORS is a convenience wrapper around
CONSUMEPATH, which is defined recursively. The latter returns not only the anchor list, but also the
updated set of seen linear paths. G.linear_paths(v) is the set of all linear paths in G that go through
vertex v. For traversal, a linear path lp is split into two paths starting at vertex v using lp.split_at(v).
The sequence of vertices starting from v to the end of the path is represented as a queue. The symbol ++
designates list concatenation.

1 f u n c t i o n CANONICALANCHORS (G: Graph , r o o t : Vertex ) −> List[Vertex] :
# Initialise the variables for ConsumePath and return the anchors

3 ( anchor s , s e e n _ p a t h s ) = CONSUMEPATH (G, [ r o o t ] , ∅ ) :
r e t u r n a n c h o r s

5
f u n c t i o n CONSUMEPATH (

7 G: Graph ,
p a t h : Queue[Vertex] ,

9 s e e n _ p a t h s : Set[LinearPath] ,
) → (List[Vertex], Set[LinearPath]) :

11 new_anchor = n u l l
unseen = ∅

13 # Find the first vertex in the queue on an unseen linear path
w h i l e unseen == ∅ :

15 i f p a t h . i s _ e mp t y ( ) :
r e t u r n ( [ ] , { } )

17 new_anchor = p a t h . pop ( )
unseen = G. l i n e a r _ p a t h s ( new_anchor ) \ s e e n _ p a t h s

19
# Add the new linear paths to the set of seen paths

21 s e e n _ p a t h s = s e e n _ p a t h s ∪ unseen

23 # We traverse the rest of current path as well as all the new linear paths
p a t h s = [ p a t h ]

25 f o r l p i n unseen :
( l e f t _ p a t h , r i g h t _ p a t h ) = l p . s p l i t _ a t ( new_anchor )

27 p a t h s . push ( l e f t _ p a t h )
p a t h s . push ( r i g h t _ p a t h )

29
# For each path find anchors recursively and update seen paths

31 a n c h o r s = [ new_anchor ]
f o r p a t h i n p a t h s :

33 ( new_anchors , new_seen_pa ths ) = CONSUMEPATH (G, pa th , s e e n _ p a t h s )
a n c h o r s = a n c h o r s ++ new_anchors

35 s e e n _ p a t h s = new_seen_pa ths
r e t u r n ( anchor s , s e e n _ p a t h s )
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4.2 Pattern matching with fixed anchors

We aim to present an ℓ-independent pattern matcher: an algorithm that can identify all pattern embed-
dings in a subject graph (5) whose complexity is independent from the number of patterns ℓ. In this
section, we restrict to pattern embeddings that map the set of canonical anchors of the pattern to a fixed
subset of vertices in the subject graph, and we show that this problem can be reduced to a simple match-
ing problem on strings.

We start by observing that such pattern embeddings with fixed anchors correspond to tree inclusions
of CT representations. Let G be a port graph, let P1, . . . ,Pℓ be patterns of width w and let X ⊆V be a set
of w vertices in G. Choose root vertices rG ∈ X and ri in patterns Pi. Write Ti for the CT representation
of Pi rooted in ri. Consider the following set G of subgraphs of G:4

G = {H ⊆ G | H is connected convex subgraph and CANONICALANCHORS(H,rG) = X}. (8)

Proposition 6. If G ̸= ∅, then there is a connected subgraph Gmax ⊆ G such that H ⊆ Gmax for all
H ∈ G . The split graph splitX(Gmax) is a tree rooted in rG. There is a pattern embedding ϕ : Pi → G
mapping the canonical anchor set of Pi to X and ϕ(ri) = rG if and only if there is an injective embedding
of trees φ : Ti → splitX(Gmax) with φ(ri) = rG that satisfies eq. (4) and preserves vertex labels.

The proof gives an explicit construction for Gmax.

Proof. Let L1, . . . ,Lw be the subset of linear paths in G that go through at least one vertex in X . Let
Gmax ⊆ G be the subgraph of G defined by the edges

Emax =
⋃

1≤i≤w

Li, (9)

For any subgraph H ∈G it holds that H ⊆Gmax due to the linear paths of H being contained in L1, . . . ,Lw.
Since any H ∈ G is connected, the anchors in X are connected in H and therefore also in Gmax. As a
consequence, all vertices of Gmax are connected. The port graph splitX(Gmax) must be a tree, as otherwise
its canonical anchors would be a strict subset of X and by corollary 5, width(splitX(Gmax))< |X |. Hence,

width(Gmax) = width(splitX(Gmax))< |X |= width(H).

contradicting the convexity assumption of eq. (8). Assuming G ̸= ∅, we now prove the bidirectional
implication between ϕ and φ .

⇐: We use vertex labels on Ti and splitX(Gmax) to mark with a unique label vertices that were split
from a same vertex v in Pi, respectively Gmax (details in appendix D). Let VPi and VGmax be the partition of
the vertices of Ti and splitX(Gmax) into sets of split vertices with identical labels; there are bijective maps
between VPi and the vertices in Pi as well as between VGmax and the vertices in Gmax. The tree embedding
φ : Ti → splitX(Gmax) preserves vertex labels and thus maps sets in VPi to sets in VGmax : it thus defines a
map ϕV : Pi → Gmax.

ϕV is injective by injectivity of φ and maps the root ri to rG by construction. The w− 1 non-root
anchor vertices of Ti are the only vertices in Ti on more than one linear path: they must be mapped to the
w− 1 vertices in splitX(Gmax) with the same properties—precisely its non-root anchor vertices. Edges
are mapped bijectively by graph splitting and thus the map ϕE can be defined by using φE and must
satisfy eq. (4). Since Gmax ⊆ G, we conclude that ϕ is a valid pattern embedding Pi → G.

4A convex subgraph H ⊆G is one such the canonical embedding H →G is convex, as defined in assumption 3 of section 3.2.
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Figure 3: The split graph of fig. 2, represented by 6 strings obtained from its 3 linear paths.

⇒: The image of ϕ : Pi → G is a convex connected subgraph of G with canonical anchors X and
root rG, and thus is in G . It must in particular be a subgraph of Gmax, and thus we can view ϕ as an
embedding ϕ : Pi → Gmax.

Note that edges are mapped bijectively between split and unsplit graphs, and thus the pattern em-
bedding ϕ defines an injective map φE from edges in Ti to edges in splitX(Gmax). We construct the map
φ : Ti → splitX(Gmax) inductively over the vertex set of Ti. We start by defining φ(r) := rG. Using eq. (4)
and φE , we can then uniquely define the image of any neighbouring vertex of r in Ti. Proceeding in-
ductively we will define φ on all vertices of Ti since it is connected. Because eq. (4) holds on ϕ , this
procedure is well-defined and the resulting map φ will also satisfy eq. (4).

Now suppose v,v′ are vertices in Ti such that φ(v) = φ(v′). By the inductive construction there
are paths from the root r to v and v′ respectively such that their image under φE are two paths from
rG to φ(v) = φ(v′). But splitX(Gmax) is a tree, so both paths must be equal. By bijectivity of φE , it
follows v = v′, and thus φ is injective. Finally, the vertex labels are defined to be invariant under pattern
embedding and thus are preserved by definition.

Given G and a vertex set X we can thus find a maximal subgraph Gmax ⊆ G that contains all subgraphs
of G with canonical anchors X . Given P1, . . . ,Pℓ, X and G, we then compute the CT representations
of P1, . . . ,Pℓ and check for inclusions within splitX(Gmax). We will use an ℓ-independent tree matching
algorithm for the latter task, thus solving the ℓ-independent pattern matching problem on port graphs.

String encoding of CT representations. We reduce the tree inclusion problem that results from propo-
sition 6 to a string prefix matching problem that admits a well-known solution, discussed in proposi-
tion 14 of appendix E. The main idea is to partition the edges of the CT representation into linear paths,
each of which is represented by two strings. They encode the paths from the anchor vertex on the path
to either end of the linear path by expressing them as sequences of port labels. A graph of width w will
have w linear paths and will be split into 2w strings. For the example graph of fig. 2, we obtain six split
linear paths, shown in fig. 3. See appendix D for more details.

This encoding defines the ASSTRINGS(T,r) procedure: it takes as input a connected acyclic split
graph T and a root r in T , and returns an encoding of T and its vertex labels as 2 ·width(T ) strings.

Proposition 7. Let T1,T2 be acyclic connected split graphs of width w and let r1,r2 be vertices in T1
resp. T2. Let (s1, . . . ,s2w) = ASSTRINGS(T1,r1) and (t1, . . . , t2w) = ASSTRINGS(T2,r2) be the string
encodings of their linear paths. Then there is an injective tree embedding T1 → T2 that satisfies eq. (4),
maps r1 to r2 and preserves vertex labels if and only if si ⊆ ti for all 1 ≤ i ≤ 2w.

The proof consists in showing that trees can be fully defined by the set of all paths from the root, which
can be encoded in and recovered from the string representation. The proof is in appendix A.3.
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The ⊆ notations on string designates prefix inclusion. The string prefix matching problem is a simple
computational task that can be generalised to to check for multiple string patterns at the same time. An
overview of this problem can be found in appendix E. Putting propositions 6 and 7 together, we can thus
obtain a solution for the ℓ-independent pattern matching problem for fixed anchors:

Proposition 8. Let G be a port graph, P1, . . . ,Pℓ be patterns of width w and depth at most d, and X ⊆V
be a set of w vertices in G. The set of all pattern embeddings mapping the canonical anchor set of Pi to
X and root ri to rG for 1 ≤ i ≤ ℓ can be computed in time O(w · d) using a pre-computed prefix tree of
size at most (ℓ ·d +1)w, constructed in time complexity O((ℓ ·d)w).

4.3 Enumeration of anchor sets

Assume that all patterns have at most width w and depth d. All that remains to turn proposition 8 into
a complete solution for pattern matching is to enumerate all possible sets X of at most w vertices in G
that are the canonical anchors of some subgraph of G of width w. The bound on the number of such
sets (proposition 10) is one of the key stepping stones of this paper that makes ℓ-independent matching
possible on port graphs.

Procedure. We introduce ALLANCHORS, a procedure similar to CANONICALANCHORS of listing 1,
described in listing 2 in detail. ALLANCHORS takes as input a port graph G, a root vertex rG and a width
w ≥ 1, and returns all sets of w vertices that form the canonical anchors of some subgraph of G with CT
representation rooted at rG. The main difference between listings 1 and 2 is that the successive calls to
CONSUMEPATH on line 35 of listing 1 are replaced by a series of nested loops (lines 42–48 in listing 2)
that exhaustively iterate over the possible outcomes for different subgraphs of G. The results of every
possible combination of recursive calls are then collected into a list of anchor sets, which is returned.

Proposition 9 (Correctness of ALLANCHORS). Let G be a port graph and H ⊆ G be a connected
convex subgraph of G of width w. Let r be a vertex of H. We have CANONICALANCHORS(H,r) ∈
ALLANCHORS(G,r,w).

The proof is by induction over the width w of the subgraph H and given in appendix A.4. The idea
is to map every recursive call to CONSUMEPATH in listing 1 to a call to ALLCONSUMEPATH in lines
42–48 of listing 2. All recursive results are concatenated on line 47, and thus the value returned by
CONSUMEPATH will be one of the anchor sets in the list returned by ALLCONSUMEPATH.

We will see that the overall runtime complexity of ALLANCHORS can be easily derived from a bound
on the size of the returned list. For this we use the following result:

Proposition 10. For a port graph G and vertex rG in G, the length of the list ALLANCHORS(G,rG,w) is
in O(cw ·w−3/2), where c = 6.75 is a constant.

Proof. Let Cw be an upper bound for the length of the list returned by a call to ALLCONSUMEPATH for
width w, and thus a bound on the length of the list returned by ALLANCHORS. For the base case w = 0,
C0 = 1. The returned all_anchors list is obtained by pushing anchor lists one by one on line 48. We
can count the number of times this line is executed by multiplying the length of the lists returned by the
recursive calls on lines 43–45, giving us the recursion relation

Cw ≤ ∑
0≤w1,w2,w3<w

w1+w2+w3=w−1

Cw1 ·Cw2 ·Cw3 . (10)
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Listing 2: Returns all sets of w vertices that form the canonical anchors of some subgraph of G with
CT representation rooted at rG.. The code structure mirrors listing 1, with ALLANCHORS and ALL-
CONSUMEPATH replacing CANONICALANCHORS and CONSUMEPATH respectively. lp.split_at,
G.linear_paths and ++ are defined as in listing 1.
f u n c t i o n ALLANCHORS (G: Graph , r o o t : Vertex , w: Integer ) −> List[List[Vertex]]) :

2 # Assumption: root is on a single linear path
a s s e r t l e n (G. l i n e a r _ p a t h s ( r o o t ) ) == 1

4
# Initialise the variables for AllConsumePath and return the anchor lists

6 a l l _ a n c h o r s = [ ]
f o r ( anchor s , s e e n _ p a t h s ) i n ALLCONSUMEPATH (G, w, [ r o o t ] , ∅ ) :

8 a l l _ a n c h o r s . push ( a n c h o r s )
r e t u r n a l l _ a n c h o r s

10
f u n c t i o n ALLCONSUMEPATH (

12 G: Graph ,
w: Integer ,

14 p a t h : Queue[Vertex] ,
s e e n _ p a t h s : Set[LinearPath] ,

16 ) → List[(List[Vertex], Set[LinearPath])] :
# Base case: return one empty anchor list

18 i f w == 0 :
r e t u r n [ [ ] ]

20
new_anchor = n u l l

22 unseen = ∅
# Find the first vertex in the queue on an unseen linear path

24 w h i l e unseen == ∅ :
i f p a t h . i s_ e m p t y ( ) :

26 r e t u r n [ ]
new_anchor = p a t h . pop ( )

28 unseen = G. l i n e a r _ p a t h s ( new_anchor ) \ s e e n _ p a t h s
# Every vertex is on at most one unseen linear path as either

30 # − the new anchor is the root , in which case it is on at most one linear path
# − or it is on up to two linear paths, but one of them has already been seen.

32 a s s e r t l e n ( unseen ) == 1
new_path = unseen [ 0 ]

34
# The w anchors are made of the new anchor and w−1 anchors on path1 − path3

36 p a t h 1 = p a t h
pa th2 , p a t h 3 = new_path . s p l i t _ a t ( new_anchor )

38 seen0 = s e e n _ p a t h s ∪ { new_path }
r e t u r n _ l i s t = [ ]

40 # Iterate over all ways to split w−1 anchors over the three paths
# and solve recursively

42 f o r 0 ≤ w1 , w2 , w3 < w such t h a t w1 + w2 + w3 == w − 1 :
f o r ( anchors1 , seen1 ) i n ALLCONSUMEPATH (G, w1 , pa th1 , seen0 ) :

44 f o r ( anchors2 , seen2 ) i n ALLCONSUMEPATH (G, w2 , pa th2 , seen1 ) :
f o r ( anchors3 , seen3 ) i n ALLCONSUMEPATH (G, w3 , pa th3 , seen2 ) :

46 # Concatenate new anchor with anchors from all paths
a n c h o r s = [ new_anchor ] ++ a n c h o r s 1 ++ a n c h o r s 2 ++ a n c h o r s 3

48 r e t u r n _ l i s t . push ( anchor s , seen3 )
r e t u r n r e t u r n _ l i s t
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Since Cw is meant to be an upper bound, we replace ≤ with equality in eq. (10) to obtain a recurrence
relation for Cw. This recurrence relation is a generalisation of the well-known Catalan numbers [18],
equivalent to counting the number of ternary trees with w internal nodes: a ternary tree with w ≥ 1
internal nodes is made of a root along with three subtrees with w1,w2 and w3 internal nodes respectively,
with w1 +w2 +w3 = w−1. A closed form solution to this problem can be found in [1]:

Cw =

(3w
w

)
2w+1

= Θ

(
cw

w3/2

)
satisfies eq. (10) with equality, where c = 27/4 = 6.75 is a constant obtained from the Stirling approxima-
tion: (

3w
w

)
=

(3w)!
(2w)!w!

= Θ

(
1√
w

)((3w)3

e3

)w( e2

(2w)2

)w( e
w

)w
= Θ

(
(27/4)w

w1/2

)
.

To obtain a runtime bound for ALLANCHORS, it is useful to identify how much of G needs to be tra-
versed. If we suppose all patterns have at most depth d, then it immediately follows that any vertex in
G that is in the image of a pattern embedding must be at most a distance d away from an anchor vertex.
For this purpose, we modify the definition of split_at in listing 2 to only return the first d vertices of
any path returned. We thus obtain the following runtime.

Corollary 11. For patterns with at most width w and depth d, the total runtime of ALLANCHORS is in

O
(

cw ·d
w1/2

)
. (11)

The proof is in appendix A.5. Finally, we reach our main result.

Theorem 12. Let P1, . . . ,Pℓ be patterns with at most width w and depth d. The pre-computation runs in
time and space complexity

O
(
(d · ℓ)w · ℓ+ ℓ ·w2 ·d

)
.

For any subject port graph G, the pre-computed prefix tree can be used to find all pattern embeddings
Pi → G in time

O
(
|G| · cw

w1/2
·d
)

(12)

where c = 6.75 is a constant.

Proof. The pre-computation consists of running the CANONICALANCHORS procedure on every pattern
and then transforming them into string tuples using ASSTRINGS. ASSTRINGS is linear in pattern sizes
and CANONICALANCHORS runs in O(w2 · d) for each pattern (proposition 4). This is followed by the
insertion of ℓ tuples of 2w strings of length Θ(d) into a multidimensional prefix tree. This dominates the
total runtime, which can be obtained directly from proposition 14.

The complexity of pattern matching itself on the other hand is composed of two parts: the compu-
tation of all anchor set candidates, and the execution of the prefix string matcher for each of the trees
resulting from these sets of fixed anchors. The complexity of the former is obtained by multiplying the
result of proposition 10 with |G|, as ALLANCHORS must be run for every choice of root vertex r in G:

O(w ·d ·Cw · |G|), (13)

where Cw is the bound for the number of anchor lists returned by ALLANCHORS. For the latter we use
proposition 14 and obtain the complexity O(w ·d ·Cw), which is dominated by eq. (13).
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Figure 4: Runtime of pattern matching for ℓ= 0 . . .104 patterns on 2, 3 and 4 qubit quantum circuits from
the Quartz ECC dataset, for our implementation (Portmatching) and the Quartz project. All ℓ = 1954
two qubit circuits were used, whereas for 3 and 4 qubit circuits, ℓ= 104 random samples were drawn.

5 Pattern matching in practice

Theorem 12 shows that pattern independent matching can scale to large datasets of patterns but imposes
some restrictions on the patterns and embeddings that can be matched. In this section we discuss these
limitations and give empirical evidence that the pattern matching approach we have presented can be
used on a large scale, outperforming existing solutions.

Pattern limitations. In section 3.2, we imposed conditions on the pattern embeddings in order to obtain
a complexity bound for pattern independent matching. We argued how these restrictions are natural for
applications in quantum computing and most of the arguments will also hold for a much broader class of
computation graphs.

In future work, it would nonetheless be of theoretical interest to explore the importance of these
assumptions and their impact on the complexity of the problem. As a first step towards a generalisa-
tion, our implementation and all our benchmarks in this section do not make any of these simplifying
assumptions. Our results below give empirical evidence that a significant performance advantage can be
obtained regardless.

Implementation. We provide an open source implementation in Rust of pattern independent matching
using the results of section 4, described in more detail in appendix F. The implementation works for
weighted or unweighted port graphs, and makes none of the simplifying assumptions employed in the
theoretical analysis.

Benchmarks. To assess practical use, we have benchmarked our implementation against a leading C++
implementation of pattern matching for quantum circuits from the Quartz superoptimiser project [20].
Using a real world dataset of patterns obtained by the Quartz equivalence classes of circuits (ECC)
generator, we measured the pattern matching runtime on a random subset of up to 10000 patterns. We
considered circuits on the T,H,CX gate set with up to 6 gates and 2, 3 or 4 qubits. Thus for our patterns
we have the bound d ≤ 6 for the maximum depth and width w = 2,3,4. In all experiments the graph
G subject to pattern matching was barenco_tof_10 input, i.e. a 19 qubit circuit input with 674 gates
obtained by decomposing a 10-qubit Toffoli gate using the Barenco decomposition [2]. The results are
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Figure 5: Runtime of our pattern matching for random quantum circuits with up to 10 qubits.

summarised in fig. 4. For ℓ= 200 patterns, our proposed algorithm is 3× faster than Quartz, scaling up
to 20× faster for ℓ= 105.

We also provide a more detailed scaling analysis of our implementation by generating random sets of
10000 quantum circuits with 15 gates for qubit numbers between w = 2 and w = 10, using the previous
gate set; the results are shown in fig. 5. From theorem 12, we expect that the pattern matching runtime is
upper bounded by a ℓ-independent constant. Runtime seems indeed to saturate for w = 2 and w = 3 qubit
patterns, with an observable runtime plateau at large ℓ. From the exponential cw dependency in eq. (12),
it is however to be expected that this upper bound increases rapidly for qubit counts w ≥ 4. A runtime
ceiling is not directly observable at this experiment size but the gradual decrease in the slope of the curve
is consistent with the existence of the ℓ-independent upper bound predicted in theorem 12.

6 Conclusion

We have demonstrated that pattern matching on port graphs can be done in a runtime asymptotically
independent of the number of patterns by pre-computing an automaton-like data structure. As a result,
we obtain a provable computational advantage in the regime of numerous low-width patterns. This opens
up promising avenues for graph rewriting and particularly for the optimisation of computation graphs and
quantum circuits. Benchmarks further show that the approach is fast in practice. At the scale of interest
(10000 pattern circuits with 3-4 qubits), the resulting implementation of pattern matching on quantum
circuits is 20x times faster than that of Quartz [20], a leading quantum superoptimiser.
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A Proofs

A.1 Proof of proposition 2

Proposition 2. Let G be a port graph with nodd vertices of odd degree and nω open ports. Then the graph
width of G is at most ⌊(nodd +nω)/2⌋.

Proof. For any acyclic linear path P ⊆ E∗ in G consider its two endpoints v1 and v2, i.e. the two vertices
in G that are only incident to one edge in P (linear paths are never empty). Let p1 and p2 be the ports
where the first and last edges are attached to v1 and v2 respectively. Let p′i ∈ ports(vi) such that p′i ∼ pi

for i = 1,2. By eq. (3), either λ (vi, p′i) ∈ P or λ (vi, p′i) = ω . By injectivity of λ (vi, ·), the first case
implies pi = p′i as we would otherwise have two edges λ (vi, p′i) ̸= λ (vi, pi) in P incident to vi. We thus
conclude that either λ (vi, p′i) = ω or pi is in a singleton equivalence class of ∼ in ports(vi).

There are nω pairs (v, p) ∈V (G)×P such that λ (vi, p′i) = ω and nodd pairs (v, p) ∈V (G)×P such
that the equivalence class of p is a singleton set in ports(v). We conclude that there can be at most
nodd +nω end ports of linear paths in G. As every linear path has two end ports and every end port must
be distinct, the result follows.

A.2 Proof of proposition 4

Proposition 4. For a connected port graph G of width w and depth d and for a vertex r of G, listing 1
returns an anchor set of w vertices; we call this the set of canonical anchors. Its runtime is O(w2 ·d).

Proof. Termination: we count the number of times CONSUMEPATH is called in one execution of CANON-
ICALANCHORS. The call on line 3 happens exactly once, so we can ignore it. On the other hand, the
path argument to CONSUMEPATH will always be distinct between any two calls on line 33: it is either
a path on a previously unseen linear path, or it is a strict subset of the path argument passed to the
current call. As there are w linear path with at most d vertices, there is a finite number of calls to CON-
SUMEPATH. The while loop on lines 14–18 pops an element from the path queue at each iteration, so
can only be executed a finite number of times. Thus we can conclude that the CONSUMEPATH procedure
always terminates.

Correctness: CANONICALANCHORS returns w vertices: in every call to CONSUMEPATH, the only
non-recursive insertion to the list of anchors is the initialisation of the anchors list on line 31. This
insertion happens if and only if unseen is non-empty (line 14). Using the assumption that every vertex
is on at most 2 linear paths, we can furthermore restrict ourselves to |unseen| = 1. Thus the size of
seen_paths increases by one at every recursion (line 21). The size of seen_paths is bounded by w and
thus w anchors are added to the anchors list over the execution of CANONICALANCHORS.

Let X be the vertices returned by CANONICALANCHORS as a set. It remains to be shown that the
X-split graph of G is connected and acyclic. A cycle C in splitX(G) must have edges on at least 2 distinct
linear paths by the second assumption of section 3.2. Say there are k > 2 distinct linear paths on the
cycle. Every anchor vertex on the cycle can be on either 1 or 2 linear paths (we assumed in section 3.2
that no vertex is on more than two paths). There must be at least k anchor vertices on C whose two
adjacent edges that are also in C are on two different linear paths—one for every “switch” of linear path
on C. However, by line 14, for every anchor there is at least one unseen linear path, so for k anchors there
must be at least k+1 linear paths in C, which is impossible.

For connectedness, observe that for every vertex v in the split graph there is a path from the root r to
v. In G, such a path is obtained by following the graph traversal implicit in the calls to CONSUMEPATH:
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let ṽ be the vertex in G that when split generates v. Every vertex in G appears in the path argument to
CONSUMEPATH at least once. There is thus an anchor a ∈ X with a path along a linear path from a to ṽ.
Applying this argument recursively, there is a sequence of anchors r = a1,a2, . . . ,ak = ṽ corresponding
to successive calls to CONSUMEPATH such that for all 1 ≤ i < k there is a linear path between ai and
ai+1.

We show that the path from r to ṽ through a1, . . . ,ak is mapped onto a path in the split graph. In other
words, we need to show that the edges along the path are rewired in such a way that adjacent edges along
the path are mapped to edges adjacent to the same split vertex. We partition the path into sections from
ai to ai+1 for i = 1, . . . ,k− 1 and consider each subpath separately. Let e1, . . . ,em be the edges of the
subpath from ai to ai+1. The first edge e1 on this subpath is always in the split graph as ai ∈ X and thus
is not split. Every other edge, on the other hand, is on the same linear path as e1. Thus for 1 ≤ j < m, if
e j ends in port p and the next edge e j+1 starts in port p′, then p ∼ p′. Thus both edges are mapped to the
same split vertex, concluding that the path from r to v is also a path in the split graph.

Complexity: Note that a recursive call to CONSUMEPATH (line 33) occurs if and only if the current
call is adding a new element to the list of anchor vertices (line 31). Since we have previously established
that the number of anchor vertices returned by CANONICALANCHORS is w, it follows that there are
at most w recursive calls to CONSUMEPATH. Therefore, to prove the runtime complexity O(w2 · d)
of CANONICALANCHORS, it remains to show that the execution of the body of CONSUMEPATH—
excluding line 33—runs in O(w · d). This is straightforward to check for all lines but 18 and 26. Line
26 is executed at most w times on a single call to CONSUMEPATH, and since lp.split_at(v) simply
needs to traverse a linear path of at most length d, the required runtime complexity holds. On the other
hand, line 18 is executed at most d times on a single call to CONSUMEPATH—since that is what it takes
for line 17 to pop all elements from the path.

Assuming the list of linear paths was computed in advance (in time O(w · d), before the first call
to CONSUMEPATH in line 3) and each linear path is given a unique index 0 . . .w− 1, we can store the
seen_paths set and the set of linear paths for each vertex as ordered lists of linear path indices. The
corresponding set G.linear_paths(v) can be stored as an attribute of v and be retrieved in constant
time (assuming for instance that vertices are indexed from 0 to |G| − 1). Other than that, line 18 is
a set operation that can be realised in a single O(w) pass over the ordered lists unseen_paths and
G.linear_paths(v) since both have at most w elements.

A.3 Proof of proposition 7

Proposition 7. Let T1,T2 be acyclic connected split graphs of width w and let r1,r2 be vertices in T1
resp. T2. Let (s1, . . . ,s2w) = ASSTRINGS(T1,r1) and (t1, . . . , t2w) = ASSTRINGS(T2,r2) be the string
encodings of their linear paths. Then there is an injective tree embedding T1 → T2 that satisfies eq. (4),
maps r1 to r2 and preserves vertex labels if and only if si ⊆ ti for all 1 ≤ i ≤ 2w.

Proof. The ⇒ direction is straightforward. By assumption, the root r1 in T1 is mapped to the root r2 in
T2. Non-root anchors on the other hand are precisely the vertices on more than one path in T1 and T2. If
ϕ : T1 → T2 is an injection of trees of the same width, then all non-root anchors of T1 must be mapped
to the non-root anchors of T2. Every linear path in T1 includes at least one anchor vertex. This must be
mapped by ϕ to a path in T2, through the corresponding anchor vertex in T2. As ϕ preserves the port
labels (eq. (4)), the image path in T2 must be a subpath of a linear path of T2. As the linear paths are split
and ordered starting from anchor vertices, the string encoding of every split linear path in T1 will be a
prefix of the string encodings of split linear paths in T2.
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⇐: it suffices to show that every path from root to a vertex in T1 is also a path from root to a
vertex in T2 and that the vertex labels coincides. A path P from root r1 in T1 can be partitioned into a
sequence of paths P = P1 · · ·Pk, which all start at anchors and are subpaths of linear paths of T1. These
subpaths corresponds to a sequence of prefixes of sα1 ,sαk in the string encoding, which are also prefixes
of tα1 , . . . , tαk . Since the vertex labels are stored in the tuple string encoding, we know that the end vertex
of the path P1 · · ·Pi coincides with the anchor of tαi+1 in T2. Applying this argument recursively on the
chain of linear subpaths, we conclude that P = P1 · · ·Pk is also a path in T2. Finally, the vertex labels must
coincide on the shared domain of definition, as the string encoding coincide. Equation (4) can be shown
to be satisfied using a similar argument to the one presented in the proof of proposition 6.

A.4 Proof of proposition 9

Proposition 9 (Correctness of ALLANCHORS). Let G be a port graph and H ⊆ G be a connected
convex subgraph of G of width w. Let r be a vertex of H. We have CANONICALANCHORS(H,r) ∈
ALLANCHORS(G,r,w).

Proof. Let H ⊆ G be a connected subgraph of G of width w. We prove inductively over w that

CONSUMEPATH(H,path,seen_paths) ∈ ALLCONSUMEPATH(G,w,path,seen_paths) (14)

for all arguments path and seen_paths. The statement in the proposition follows from this claim
directly.

For the base case w = 1, CONSUMEPATH will return [new_anchor], where new_anchor is ob-
tained from lines 16–20 of listing 1: there is only one linear path and thus for every recursive call
to CONSUMEPATH, unseen will be empty, until path has been exhausted and the empty list is re-
turned. The definition of new_anchor coincides with the one obtained from lines 20–28 of listing 2.
The only values of w1, w2 and w3 that satisfy the loop condition on line 42 of listing 2 for w = 1 are
w1 = w2 = w3 = 0. Using the base condition on lines 18–20 of listing 2, we conclude that ALLCON-
SUMEPATH(G,1,path,seen_paths) returns [[new_anchor]], satisfying eq. (14).

We now prove the claim for w > 1 by induction. Using our simplifying assumptions, we obtain the
assertion on line 32 of listing 2, as documented. For listing 1, this assumption simplifies the loop on lines
34–37 to at most three calls to CONSUMEPATH with arguments (H,Pcurr,Scurr), (H,Pℓ,Sℓ) and (H,Pr,Sr)
respectively, where

• Pcurr is the value of the path variable after line 20,

• Pℓ and Pr refer to the two halves of the new linear path, as computed and stored in the variables
left_path and right_path on line 28, and

• Scurr,Sℓ and Sr are the values of the seen_paths variable after the successive updates on line 23
and two iterations of line 37.

Consider a call to CONSUMEPATH (listing 1) with arguments G = H and some variables path and seen_-
paths. Let wcurr,wℓ and wr be the length of the values returned by the three recursive calls to CON-
SUMEPATH of line 35. As every anchor vertex reduces the number of unseen linear paths by exactly one
(using the simplifying assumptions), it must hold that wcurr +wℓ+wr +1 = w. Thus for a call to ALL-
CONSUMEPATH (listing 2) with arguments G = G, w = w and the same values for path and seen_paths,
there is an iteration of the for loop on line 42 of listing 2 such that w1= wcurr,w2= wℓ and w3= wr. The
definition of seen0 on line 38 of listing 2 coincides with the update to seen_paths on line 23 of list-
ing 1; it follows that on line 43 of listing 2 the recursive call ALLCONSUMEPATH(G,wcurr,Pcurr,Scurr) is
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executed. From the induction hypothesis we obtain that there is an iteration of the for loop on line 43 of
listing 2 in which anchors1 and seen1 coincide with the new_anchors and new_seen_paths variables
of the first iteration of the for loop on line 34 of listing 1. In particular the value of seen1 is equal Sℓ.

Repeating the argument, we obtain that there are iterations of the for loops on lines 44 and 45 of
listing 2 that correspond to the second and third calls to CONSUMEPATH on line 35 of listing 1. Finally,
the concatenation of anchor lists on line 47 of listing 2 is equivalent to the repeated concatenations on
line 36 of listing 1 and so we conclude that eq. (14) holds for w.

A.5 Proof of corollary 11

Corollary 11. For patterns with at most width w and depth d, the total runtime of ALLANCHORS is in

O
(

cw ·d
w1/2

)
. (11)

Proof. We restrict split_at on line 37 to only return the first d vertices on the linear path in each
direction: vertices more than distance d away from the anchor cannot be part of a pattern of depth d.

We use the bound on the length of the list returned by calls to ALLCONSUMEPATH of proposition 10
to bound the runtime. We can ignore the non-constant runtime of the concatenation of the outputs of
recursive calls on line 47, as the total size of the outputs is asymptotically at worst of the same complexity
as the runtime of the recursive calls themselves. Excluding the recursive calls, the only remaining lines
of ALLCONSUMEPATH that are not executed in constant time are the while loop on lines 24–28 and the
split_at call on line 37.

Consider the recursion tree of ALLCONSUMEPATH, i.e. the tree in which the nodes are the recursive
calls to ALLCONSUMEPATH and the children are the executions spawned by the nested for loops on
line 42–48. This tree has at most

Cw = Θ

(
cw

w3/2

)
leaves. A path from the root to a leaf corresponds to a stack of recursive calls to ALLCONSUMEPATH.
Along this recursion path, the seen_paths set is always strictly growing (line 38) and the vertices
popped from the path queue on line 27 are all distinct. split_at is called once for each of the w linear
path that are added to seen_paths. For each linear path two paths of length at most d are traversed and
returned. Thus the total runtime of split_at along a path from root to leaf in the recursion tree is in
O(w ·d). Similarly, the number of executions of the lines 25–28 is bound by the number of elements that
were added to a path queue, as for every iteration an element is popped off the queue on line 27. This is
equal to the number of elements returned by split_at, resulting in the same complexity. We can thus
bound the overall complexity of executing the entire recursion tree by O(Cw ·w ·d) = O( cw·d

w1/2 ).

B Lower bound on the number of patterns

Proposition 13. Let Nw,d be the number of port graphs of width w, depth d and maximum degree ∆ ≥ 4.
We can lower bound

Nw,d >
( w

2e

)Θ(wd)
,

assuming w ≤ o(2d).
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In the regime of interest, w is small, so the assumption w ≤ o(2d) is not a restriction. In the main text
we use the bound |P| ≤ w · d to avoid introducing the circuit depth. The bound stated in eq. (2) is thus
slightly looser.

Proof. Let w,d > 0 and ∆ ≥ 4 be integers. We wish to lower bound the number of port graphs of depth d,
width w and maximum degree ∆. It is sufficient to consider a restricted subset of such port graphs, whose
size can be easily lower bounded. We will count a subset of CX quantum circuits, i.e. circuits with only
CX gates, a two-qubit non-symmetric gate. Because we are using a single gate type, this is equivalent to
counting a subset of port graphs with vertices of degree 4. Assume w.l.o.g that w is a power of two. We
consider CX circuits constructed from two circuits with w qubits composed in sequence:

• Fixed tree circuit: A log2(w)-depth circuit that connects qubits pairwise in such a way that the
resulting port graph is connected. We fix such a tree-like circuit and use the same circuit for all
CX circuits. We can use this common structure to fix an ordering of the w qubits, that refer to as
qubits 1, . . . ,w.

• Bipartite circuit: A CX circuit of depth D= d− log2(w) with exactly w/2 ·(d− log2(w)) CX gates,
each gate acting on a qubit 1 ≤ q1 ≤ w/2 and a qubit w/2 < q2 ≤ w.

The following circuit illustrates the construction:

Fixed tree circuit Variable bipartite circuit

. . . · · ·

. . . · · ·

. . . · · ·

. . . · · ·

··
·

··
·

··
·

··
·

··
·

··
·

. . . · · ·

. . . · · ·

. . . · · ·

. . . · · ·

All that remains is to count the number of such bipartite circuits. Every slice of depth 1 must have w/2
CX gates acting on distinct qubits. Every qubit 1 to w/2 must interact with one of the qubits w/2+ 1
to w, so there are (w/2)! such depth 1 slices. Repeating this depth 1 construction D times and using
Sterling’s approximation, we obtain a lower bound for the number of port graphs of depth d, width w
and maximum degree at least 4:

((w
2

)
!
)D

>
√

wπ

( w
2e

)wD/2
=
( w

2e

)Θ(w·d)

where we used w = o(2d) to obtain Θ(D) = Θ(d) in the last step.
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C Quantum circuits as port graphs

A relevant consideration when viewing quantum circuits as port graphs is the question of equality on
circuits. We consider two circuits to be equal if they are equal as port graphs. This sense of equality is
more general than equality of ordered lists of gates, another common internal representation of quantum
computations, but does not account for commuting gates or gate symmetries. An example of a symmetric
gate type is the CZ gate, a gate type of arity n = 2 that is symmetric in its arguments

=

that is to say, exchanging the order of the inputs and outputs does not change the computation. Viewed
as port graphs, however, the left and right hand side are distinct circuits

CZ
0 0

1 1

̸= CZ
0 0

1 1

= CZ
1 1

0 0

In the case that such symmetries need to be taken into account for pattern matching, there are two simple
solutions. For rewriting purposes, one may choose to add a single rewrite rule to express the symmetry
explicitly, stating that the symmetric gate can be rewritten to itself with the edge order reversed. This will
recover the full expressivity of the rewrite rule set, at the expense of additional rewrite rule applications.

Alternatively, all instances of a pattern that are equivalent up to gate symmetries can be enumerated
and added as separate patterns to the matcher. This approach is particularly appealing as the runtime of
the pattern matcher will remain unchanged, despite the increase in the number of patterns (exponential
in the number of symmetric gates). The trade-off is increased pre-compilation time and pattern matcher
size.

D Properties of the Canonical Tree representation

We provide here the exact derivations of the properties of the CT representation that we rely on, namely
an injective map from the port graph representation to CTs, invariance of the CT representation under
pattern embeddings and the string encoding of CT trees.

Equivalence of the CT representation. A connected port graph G is fully defined by the set of edges,
given as a set of pairs in V ×P . Given the CT representation of G with vertices Ṽ , alongside a map
merge : Ṽ → V that maps the vertices of the CT representation to the vertices of G, it is immediate that
G can be recovered by mapping every (v, p) ∈ Ṽ ×P to (merge(v), p) ∈V ×P .

Up to isomorphism in the co-domain V , we can store merge by storing the partition of Ṽ into sets with
the same image. We introduce for this a map Ṽ → Ṽ that maps every vertex to a canonical representative
of the partition—for instance the vertex closest to the root in CT. This map can be stored as vertex labels
of CT, which we can refer to as the labelled CT representation for distinction. However in the main text,
it is always the labelled representation that is meant when CT representations are discussed.

We thus have a bijective map between the labelled CT representation of G and the port graph G.
Furthermore, this map preserves the linear paths, i.e. it maps one to one the linear paths of the labelled CT
representation to the linear paths of G. For all purposes, we can thus treat the labelled CT representation
as an equivalent representation of G.
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Invariance under pattern embedding. Unlike graphs, rooted trees can be defined in a way that is
invariant under bijective relabelling of the vertices by using the invariant port labels. Every tree vertex is
either the root vertex or it is uniquely identified by the path to it from the root. Since paths can be defined
in terms of port labels, paths are invariant under pattern embeddings of the underlying graph.

For trees T and T ′, let S and S′ be the sets of their respective vertices expressed as sequences of port
labels. We thus define tree inclusion and equality only up to vertex relabelling: T ⊆ T ′ if and only if
S ⊆ S′, and T = T ′ if and only if S = S′. On labelled trees, we also require inclusion (resp. equality)
of the vertex label maps, including in particular the merge map of labelled CT representations. As a
result, subtree relations in labelled CT representations correspond to subgraphs of the original graph,
in effect reducing the pattern matching problem on port graphs to a problem of tree inclusion on CT
representations. This statement is formalised in proposition 6.

String encoding of CT representations. In order for our string encoding of CT representations to map
tree inclusion to string prefixes, we recall that the anchor set in eq. (8) is fixed: a subtree of T with the
same anchor set can only be obtained by shortening the linear paths at their ends— the resulting subpath
will always contain the anchor vertex. Given a linear path L of T , we thus split L at the anchor on L and
obtain two paths L1,L2 starting from the anchor to the ends of L. For any subtree T ′ ⊆ T , the linear path
L′ that is a subpath of L will split into L′

1,L
′
2, prefixes of L1 and L2 respectively.

With an appropriate string representation of CT vertices and their labels, this will encode all linear
paths. In the same way that the merge map of the labelled CT representation is used to restore the
original graph from the split CT vertices, we use it to recover the anchor vertices from the split linear
paths. Finally, to order the linear paths in the string tuple, we use for instance the order of their anchors
induced by port ordering.

E Prefix Trees

Our main result is achieved by reducing a tree inclusion problem to the following problem.

String prefix matching. Consider the following computational problem over strings. Let Σ be a finite
alphabet and consider W = (Σ∗)w the set of w-tuples of strings over Σ. For a string tuple (s1, . . . ,sw)∈W
and a set of string tuples D ⊆ W , the w-dimensional string prefix matching consists in finding the set

{(p1, . . . , pw) ∈ D | for all 1 ≤ i ≤ w : pi is a prefix of si}.

This string problem can be solved using a w-dimensional prefix tree. We give a short introduction to
prefix trees for the string case but refer to standard literature for more details [11].

One-dimensional prefix tree. Let P1, . . . ,Pℓ ∈ A ∗ be strings on some alphabet A . Given an input
string s ∈ A ∗, we wish to find the set of patterns {P1≤i≤ℓ|Pi ⊆ s}, i.e. Pi is a prefix of s.

The prefix tree of P1, . . . ,Pℓ is a tree with a tree node for each prefix of a pattern. The children of
an internal node are the strings that extend the prefix by one character. The root of the tree is the empty
string. Each tree node also stores a list of matching patterns, with each pattern stored in the unique
corresponding node. Every prefix tree has an empty string node, which is the root of the tree. For every
inserted pattern of length at most L nodes are inserted, one for every non-empty prefix of the pattern.
Thus a one-dimensional prefix tree has at most ℓ ·L+1 nodes and can be constructed in time O(ℓ ·L).

Given an input s ∈ A ∗, we can find the set of matching patterns by traversing the prefix tree of
P1, . . . ,Pℓ starting from the root. We report the list of matching patterns at the current node and move to
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the child node that is still a prefix of s, if it exists. This procedure continues until no more such child
exists. In total the traversal takes time O(|s|), as every character of s is visited at most once.

Note that in theory the number of reported pattern matches can dominate the runtime of the algorithm.
We can avoid this by returning the list of matches as an iterator, stored as a list of pointers to the tree
nodes matching lists.

Multi-dimensional prefix tree. A w-dimensional prefix tree for w > 1 is defined recursively as a
one-dimensional prefix tree that at each node stores a w− 1-dimensional prefix tree. Given an input
w-tuple (s1, . . . ,sw) ∈ (A ∗)w, the traversal of the w-dimensional prefix tree is done by traversing the
one-dimensional prefix tree on the input s1 until no child is a prefix of the input, and then recursively
traversing the w− 1-dimensional prefix tree on (s2, . . . ,sw). Similarly to the one-dimensional case, the
list of matching patterns is stored at prefix tree nodes and reported during traversal. The traversal thus
takes time O(|s1|+ · · ·+ |sw|), as every character of s is visited at most once.

For ℓ tuples of size w of words of maximum length L, we can bound the number of nodes of the
w-dimensional prefix tree by 1+(ℓ ·L)w. The runtime and space complexity of the construction of the
w-dimensional prefix tree is thus in O((ℓ ·L)w), summarised in the result:

Proposition 14. Let D ⊆ W be a set of string tuples and L the maximum length of a string in a tuple
of D . There is a prefix tree with at most (ℓ ·L)w +1 nodes that encodes D that can be used to solve the
w-dimensional string prefix matching problem in time O(|s1|+ · · ·+ |sw|).

F Open source implementation

The code is available at https://github.com/lmondada/portmatching/. All benchmarking can be
reproduced using the tooling and instructions at https://github.com/lmondada/portmatching-benchmarking.

We represent all the pattern matching logic within a generalised finite state automaton, composed of
states and transitions. This formalism is used to traverse the graph input and express both the prefix tree of
the string prefix matching problem and the (implicit) recursion tree of listing 2 in section 4.3. We sketch
here the automaton definition. Further implementation details can be obtained from the portmatching
project directly.

In the pre-computation step, the automaton is constructed based on the set of patterns to be matched.
It is then saved to the disk; a run of the automaton on an input graph G is the solution the pattern
independent matching problem for the input G. To run the automaton, we keep track of the set of current
states, initialised to a singleton root state and updated following allowed transitions from one of the
current states. Which transitions are allowed is computed using predicates on the input graph stored at
the transitions. This is repeated until no further allowed transitions exist from a current state.

At any one state of the automaton, zero, one or several transitions may be allowed depending on the
input graph. As the automaton is run for a given input graph G, we keep track of the vertices that have
been matched by the automaton so far with an injective map between a set of unique symbols and the
vertices of G. Vertices in this map are the known vertices of G. There are three main types of transitions:

• A constraint transition asserts that a property of the known vertices holds. This can be checking
for a vertex or edge label, or checking that an edge between two known vertices and ports exists.

• A new vertex transition asserts that there is an edge between a known vertex v at a port p and a
new vertex at a port p′. The new vertex must not be any of the known vertices. When the transition
is followed, a new symbol is introduced and the vertex is added to the symbol vertex map.

https://github.com/lmondada/portmatching/
https://github.com/lmondada/portmatching-benchmarking
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• A set anchor transition is an ε-transition, i.e. a non-deterministic transition that is always allowed.
Semantically, it designates a known vertex as an anchor.

By requiring that all constraint transitions from a given state assert mutually exclusive predicates (such
as edges starting from a given vertex and port, or the vertex label of a given vertex), we can ensure that
constraint transitions are always deterministic. New vertex transitions are also deterministic in finite
depth patterns 5, so that in the regime explored in this paper, the only source of non-determinism is the
choice of anchors. Intuitively, this corresponds to the facts that the prefix tree traversal of section 4 is
deterministic while the anchors enumeration of listing 2 returns a multitude of options to be explored
exhaustively.

To obtain a set of matching patterns from a run of the automaton, we store pattern matches as lists at
the automaton states. When a state is added to the set of current states, its list of matches are added to the
output. To build the automaton, we consider one pattern at a time, convert it into a chain of transitions
of the above types that is then added to the state transition graph. At the target state of the last transition,
we then add the pattern ID to the list of matched patterns.

5In cyclic and non-convex cases, it can happen that a vertex is both a known vertex of a large pattern and a new vertex within
a smaller subpattern.
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