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A recent paper by Drewes, Hoffmann, and Minas (GCM 2023 proceedings, to appear) has
shown that certain graph languages can be defined and efficiently recognized by finite au-
tomata when strings over typed symbols are interpreted as graphs. This approach has been
implemented in the tool Grappa RE , which is described in this paper. Grappa RE allows for
the convenient specification of graph languages through regular expressions, converts each of
them into a minimized deterministic finite automaton, and checks whether it can recognize
graphs without the need for backtracking. Measurements confirm that recognition runs in
linear time.

1 Introduction
Engelfriet and Vereijken have described that hypergraphs can be composed of elementary graphs
using sequential and parallel composition to define hyperedge replacement grammars [10]. If only
sequential composition, i.e., concatenation, is used, then such a composition yields a string over
an alphabet (representing elementary graphs). The resulting graphs are therefore interpretations
of these strings. Finite automata are a common means of defining regular (string) languages, and
by interpreting the generated strings, such automata define graph languages. This idea is not
new, finite automata for algebraic structures were already studied by Arbib and Give’on in the
1960s [1, 11], Bozapalidis and Kalampakas analyzed finite automata on Engelfriet’s and Verei-
jken’s hypergraphs [4, 16], Brugging, König et al. in the context of hypergraphs as cospans [3],
and more recently Earnshaw and Sobociński studied regular languages of morphisms in free
monoidal categories, which can be interpreted as hypergraphs or string diagrams, with their
associated automata [9]. All of these approaches focus on defining graph languages through
automata.

In contrast, Hoffmann, Drewes, and Minas recently proposed an approach to efficient graph
recognition by finite automata in the sense that an automaton is “executed” to decide whether
a given graph is a member of its graph language or not [8]. More precisely, given a finite
automaton and a graph, a decision procedure can decide whether the graph is a member of the
automaton’s graph language. This is always possible with an inefficient backtracking algorithm,
but for certain automata backtracking can be avoided, allowing a recognition in linear time in
the number of graph edges. These automata must satisfy certain conditions, which are presented
in [8] together with algorithms for checking them.

This paper describes the tool Grappa RE , which implements these checking algorithms, and
the recognition procedure for automata satisfying these conditions. Special emphasis is placed on
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Figure 1: Three graphs S, M , and T .

the techniques necessary for efficient graph recognition in linear time. Grappa RE also supports
regular expressions, which can be used to conveniently specify finite automata. Experiments
with this tool confirm the statement in [8] that it is possible to recognize graphs with finite
automata in linear time. In this way, Grappa RE complements the tool landscape of Grappa1.
While Grappa (Graph Parsers) is a tool environment for generating efficient top-down and
bottom-up parsers for hyperedge replacement grammars and contextual hyperedge replacement
grammars [5, 14, 6, 7], Grappa RE (Grappa for Regular Expressions) realizes graph recognizers
for regular expressions.

This paper is organized as follows: The next section describes informally the approach of
using finite automata for efficient graph recognition, as proposed in [8], and describes in detail
the underlying recognition algorithm with and without backtracking. Then Section 3 describes
how this approach has been implemented in Grappa RE . Special emphasis is placed on the use of
regular expressions as a compact way to specify finite automata, and the efficient implementation
of constant time edge selection, which is required for graph recognition in linear time. Section 4
then summarizes the results of experiments with some graph languages specified by regular
expressions and recognizable by Grappa RE . These results show that Grappa RE does indeed
recognize graphs in linear time (in the number of their edges). Section 5 concludes the paper.

2 Finite Automata Accepting Graphs

We consider edge-labeled hypergraphs (which we will simply call graphs) without node labels.
A ranked vocabulary is used to label hyperedges (which we will simply call edges). Each label
ℓ has a rank rank(ℓ) ∈ N, and each edge labeled ℓ is then attached to rank(ℓ) different nodes.
Each graph G also has a front and a rear interface front(G) and rear(G), respectively, which
are repetition-free sequences of nodes in G. Front nodes may also occur in the rear interface.
We say that a graph G is of type (m,n) if |front(G)|= m and |rear(G)|= n; m is said to be the
front type of G and n its rear type.

Figure 1 shows three examples of such graphs with the labels a, b, and c with rank(a) =
rank(b) = rank(c) = 2. Each graph is contained in a rectangular box, with circles symbolizing
nodes and arrows symbolizing binary edges. Nodes of the front interface are marked with double
lines starting from the left edge of the box; double lines from the right edge mark nodes of the
rear interface. The order of the double lines from top to bottom defines the order of the nodes
in that interface. For example, the graph S consists of the nodes 1, 2, 3, 4 and 5 and three edges
marked with a, b, and c. The front interface of S consists of the nodes 1 and 4, i.e., the node
sequence 14, the rear interface of the node sequence 235. The graphs S, M , and T are of types
(2,3), (3,3), and (3,0), respectively, because the rear interface of T is empty.

1Grappa and Grappa RE are available at https://www.unibw.de/inf2/grappa

https://www.unibw.de/inf2/grappa
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Figure 2: Results of concatenating S, M , and T .

Two graphs G and H can be concatenated to form a graph G⊙H if their types match, which
means that the rear type of G is the same as the front type of H. G⊙H is obtained by taking the
disjoint union of G and H and then merging the corresponding nodes from rear(G) and front(H).
Figure 2 shows the result of the concatenations S⊙T , S⊙M ⊙T , and S⊙M ⊙M ⊙T . If we
define S⊙Mk⊙T as the graph resulting from the concatenation of S, k copies of M and finally
T , then S⊙Mk⊙T is a graph representation of the string ak+2bk+2ck+2.

The approach in [8] is based on the idea of defining a vocabulary of graph symbols and
assigning a specific (elementary) graph JsK to each symbol s as an interpretation. Strings over
this vocabulary can then be interpreted as graphs obtained by concatenating the elementary
graphs of the symbols. Of course, this assumes that the string is valid in the sense that it
consists only of concatenations of symbols such that the corresponding elementary graphs match
in type, so that their concatenation is defined. Otherwise, the string has no valid interpretation.

So-called blank and atom symbols are defined as vocabulary, with blanks and atoms as their
graph interpretations. Blanks are discrete graphs whose front interface contains all nodes of the
blank. In contrast, each atom contains exactly one edge, and no atom has a node that is neither
in its front interface nor attached to its edge. Therefore, all nodes of the rear interface must also
occur in the front interface, be connected to the edge, or both. These restrictions are necessary
for efficient graph recognition, because in this way every node during the recognition process is
either already contained in the rear interface of the already recognized subgraph, or is attached
to the edge that is read next.

We write blank symbols as ε
(n)
ϱ and atom symbols as ℓφ

ϱ for any n ∈ N, sequences φ and ϱ
over {1, . . . ,n} without repetitions, and edge label ℓ with rank(ℓ)≤ n. The corresponding blank
and atom, Jε(n)

ϱ K and Jℓφ
ϱ K, respectively, have nodes 1, . . . ,n and ϱ as their rear interfaces. Jε(n)

ϱ K
has 1 · · ·n, Jℓφ

ϱ K has φ as its front interface. The unique edge of Jℓφ
ϱ K is labeled ℓ and attached

to the nodes 1, . . . ,rank(ℓ) (in that order).
For example, Figure 3 shows that the graph S in Figure 1 is isomorphic to a concatenation

of the three atoms Ja13
23K, Jb32

312K, and Jc341
342K, i.e., S is an interpretation of a13

23 b32
312 c341

342. Similarly,
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M and T are interpretations of a134
234 b324

314 c341
342 and a134

234 b123
3 c1

ε, respectively.
A finite automaton over such symbols defines a language of strings accepted by the automa-

ton, and thus defines a graph language, as long as all these strings have valid graph interpreta-
tions, which is easy to ensure: We define the type of each symbol to be the type of its elementary
graph (ε(n)

ϱ and ℓφ
ϱ then have type (n, |ϱ|) and (|φ|, |ϱ|), respectively), and consider only those

automata that allow assigning a rank rank(q) ∈N to each state q, such that each incoming tran-
sition of q has a symbol of rear type rank(q), and each outgoing transition of q has a symbol of
front type rank(q).

Let anbncn denote the language of all graphs representing strings in {akbkck | k ∈ N}. Con-
tinuing the example above, Figure 4 shows a finite automaton accepting all strings that can
be interpreted as graphs in anbncn. q0 is its initial state, q5 its only final state. The states
have the ranks rank(q0) = rank(q1) = 2, rank(q2) = rank(q4) = rank(q6) = 3, rank(q3) = 1, and
rank(q5) = 0.

2.1 Recognition with Backtracking

While interpreting a string accepted by an automaton is straightforward, recognizing a given
graph, i.e., finding a string representation of the graph such that the string is accepted by
the automaton, involves a search process, usually with backtracking due to nondeterministic
decisions. Algorithm 1 outlines this process as a classic depth-first search with backtracking
using the recursive depthFirst procedure. It tries to find a walk through the finite automaton
from the initial state to some final state that accepts a string with the input graph G as its
interpretation. It either fails in Line 6 or terminates successfully in Line 8.

The algorithm does not call the depthFirst procedure but fails immediately if G has a discrete
node that is not in its front interface (Line 5 and Line 6). Recall that no atom or blank can
create a discrete node, since all nodes in the rear interface also occur in the front interface or
are attached to the (unique) edge of the atom.

The depthFirst procedure is called with three parameters q,F,U : q is a state of the automa-
ton, F (for “front”) contains a sequence of nodes that is the front interface of the next elementary
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Figure 4: Finite automaton accepting graphs in anbncn.
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Algorithm 1: Recognizing a graph with a finite automaton using backtracking.
Input : input graph G and a finite automaton A.
Output: success if A accepts G, and failure otherwise.

1 begin
2 q← initial state of A;
3 F ← front interface of G;
4 U ← all edges of G;
5 if all discrete nodes of G occur in F then call depthFirst(q,F,U);
6 stop with failure

7 procedure depthFirst(q: State, F : Sequence of nodes, U : Set of edges)
8 if q is final, F is the rear interface of G, and U = ∅ then stop with success;
9 foreach outgoing transition t of q do

10 let q′ be the state reached by t;
11 if t is an atom transition then
12 let α be the atom symbol of t;
13 foreach edge e ∈ U as specified by α and attached to nodes in F do
14 let F ′ be F after modifying it according to α and e;
15 call depthFirst(q′,F ′,U \{e})

16 else
17 let F ′ be F after modifying it according to the blank symbol of t;
18 call depthFirst(q′,F ′,U)

graph to be read, and U (for “unread”) contains all edges of G that have not yet been read. The
procedure finally terminates successfully if it can (recursively) find a walk from q to some final
state such that it reads all edges in U , starting with F as the front interface and ending with the
rear interface of G. This means that if depthFirst is called with q being a final state, F being
the rear interface of G, and U = ∅, Algorithm 1 will terminate successfully (Line 8). Otherwise
depthFirst tries each of the outgoing transitions of q in the usual depth-first manner in Line 9,
i.e., it selects an arbitrary transition first and continues the search with recursive procedure calls
to depthFirst (see below). These calls return only if they cannot find a successful walk. The
next transition is then selected in Line 9, and so on. The current depthFirst call is terminated,
i.e., Algorithm 1 backtracks, if all outgoing transitions of q lead to a dead end.

If the selected transition in Line 9 is an atom transition, i.e, if it is labeled with an atom
symbol α, it tries to find a matching edge e not yet read (Line 13); α and F determine which
edge may be selected: α determines the label of e and how it must be connected to nodes in F .
In particular, the front nodes of JαK must correspond to the nodes in F . Nodes that are not in
F but are attached to e must be “new” nodes, i.e., they must not have been encountered before.
The latter follows from the fact that nodes of JαK that do not appear in its front interface are
created by this step. If the recognizer has several candidates to choose from in Line 13, it will
select them one by one by recursively calling depthFirst. If this call fails, it will try the next
one, and so on.

However, if the selected transition in Line 9 is labeled with a blank symbol, no further
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decision is required; a blank can always be processed, it just modifies the rear interface of the
subgraph of G read so far (Line 17) and continues the depth-first search by recursively calling
depthFirst in Line 18.2

2.2 Recognition without Backtracking

This search can be expensive because it uses backtracking to try out possible solutions instead of
systematically selecting suitable transitions and edges, which can lead to exponential runtimes.
To address this problem, [8] has discussed conditions under which backtracking can be avoided
completely in this search process. In fact, the automaton must satisfy additional conditions
to allow a deterministic recognition process without backtracking: It must have the transition
selection (TS) property and the free edge choice (FEC) property, which will be explained below.
Since backtracking is then not necessary, Algorithm 1 is transformed into a simplified version
(Algorithm 2), which will be discussed next.

It is clear that a deterministic choice of a suitable transition is impossible if the automaton A
is nondeterministic. That is, if it contains a state with two outgoing transitions labeled with
the same graph symbol. Therefore, the finite automaton must first be transformed into a
deterministic finite automaton (DFA), as in the case of transforming a nondeterministic finite
automaton for strings, before it can be used by Algorithm 2. The approach proposed in [8] uses
a modified version of the well-known powerset construction. Surprisingly, however, the powerset
construction does not always produce a deterministic automaton in this context. This can
happen if A uses atom symbols which differ only in their rear interfaces (see [8, Example 4.1]).
In this case, however, one can always transform A into an equivalent automaton A′, which can
then be transformed into an equivalent DFA Ad using the modified powerset construction. The
transformation of A into the DFA Ad is thus a two-step process, consisting of the preprocessing
step (called disambiguation) and the following (modified) powerset construction.

If Ad produced by the modified powerset construction contains blank transitions, all of them
reach a final state that has no outgoing transitions. Consequently, a blank transition can only
be selected if all edges of G are have been read. All previously selected transitions must be
atom transitions. Each loop cycle of the while loop (Lines 5–14 of Algorithm 2) selects an atom
transition and then reads a corresponding edge of G. The TS property of Ad implies that the
only possible transition can be selected as shown in Algorithm 2: The foreach loop (Lines 6–13)
tries all outgoing atom transitions of the current state in a predefined order until it finds the
first one such that G contains a matching edge that has not yet been read before. This order is
determined by the algorithm that checks the TS property of Ad described in [8]. In fact, Ad has
the TS property if such an order exists for each of its states.

Note that Algorithm 2 in Line 9 selects any unread edge e that matches the atom symbol α
of the selected transition. In fact, every edge that matches α is equally suitable if Ad has the
FEC property: If one of these candidates is the right choice for Ad to accept G, then all of them
are. [8] has proposed a sufficient criterion for checking the FEC property, i.e., Ad has the FEC
property if the criterion is met. But if the criterion is not met, Ad may or may not have the FEC
property. The criterion consists of identifying all transitions in Ad that are deferrable. These are
transitions where Algorithm 2 can choose between several possible candidates in Line 9. They
are called deferrable because one of the candidates is selected now, while the others must be

2Note that a cycle of blank transitions can lead to an infinite recursion, which could easily be prevented by
keeping track of the transitions visited so far. However, this has been omitted here to simplify the presentation.
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Algorithm 2: Recognizing a graph with a DFA that has the FEC and TS property.
Input : input graph G and a DFA Ad that has the FEC and TS property.
Output: success if Ad accepts G, and failure otherwise.

1 if G contains discrete nodes that are not in its front interface then stop with failure;
2 q← initial state of Ad;
3 F ← front interface of G;
4 U ← all edges of G;
5 while U ̸= ∅ do
6 foreach outgoing atom transition t of q do
7 let α be the atom symbol of t;
8 if there is an edge e ∈ U as specified by α and attached to nodes in F then
9 let e be such an edge;

10 modify F according to α and e;
11 set q to the state reached by t;
12 remove e from U ;
13 continue while loop at Line 5

14 stop with failure
15 if q is a final state and F is the rear interface of G then stop with success;
16 if there is an outgoing blank transition of q such that its blank turns F into the rear

interface of G then stop with success;
17 stop with failure

selected in later cycles of the while loop, possibly using other transitions. [8] has outlined how
to identify deferrable transitions. The criterion now requires that the rear interface of α does
not contain any nodes that are not also contained in its front interface, i.e., the selection of e in
Line 9 cannot affect the selection of F in Line 10.

Algorithm 2 terminates successfully after it has read all edges of G in its while loop and has
either reached a final state where F and the rear interface of G are identical (Line 15), or it
can reach a final state by taking a blank transition that modifies F in the rear interface of G
(Line 16). Otherwise, A does not accept G and Algorithm 2 terminates with a failure.

As noted above, a single edge is read in each cycle of the while loop in Lines 5–14. [8] argued
that a loop cycle takes only constant time if edge selection is implemented properly. Conse-
quently, Algorithm 2 takes only linear time (in the number of edges) to recognize an input
graph. This is demonstrated in Section 4.

3 Grappa RE
The approach described in [8] and summarized in the previous section has been realized in
the tool Grappa RE . It is implemented in Java and uses several external packages, in par-
ticular dk.brics.automaton [17] with its standard algorithms for finite automata and regular
expressions for strings, and GraphStream [2] for graph visualization. The architecture of
Grappa RE is represented as a BPMN3 diagram in Figure 5. As usual, rectangles represent

3Business Process Management Notation
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Figure 5: Architecture of Grappa RE

activities, document icons represent data, either external files (e.g., Automaton spec) read or
written by Grappa RE , which have a yellow background, or internal data (e.g., A), drawn with
a white background. The gateways represent decisions where only one of the outgoing paths is
taken.

Grappa RE can be used in two modes, represented by the two different start events, i.e.,
either with the specification of a finite automaton (“Use automaton spec”), or with a regular
expression (“Use regular expression”). We will describe the first mode first, then Section 3.1
will describe the second mode. Both modes can be used interactively with a GUI or in a
headless variant. The GUI is described in Section 3.3, and the headless variant was used in the
experiments to check the speed of the recognition procedure described in Section 4.

Grappa RE reads finite automata and input graphs from text files. In the first mode (“Use
automaton spec”), the Automaton Reader reads the specification of a finite automaton from
a text file. Figure 6 shows such a textual specification of the automaton in Figure 4. The
specification must contain the ranked alphabet of edge labels after the symbol keyword; the
rank of each symbol is given in parentheses. The states are listed after the state keyword.
State ranks (see Section 2) are again given in parentheses. Final states are marked with *,
the start state with the start keyword, and transitions in the the obvious way. For example,
a^13_23 represents the atom symbol a13

23 and c^1_<> represents the atom symbol c1
ε. Blank

symbols such as ε
(2)
12 are written as <>^2_12, but do not appear in Figure 6.

The Automaton Reader produces an internal representation A of the automaton and then

auto abc {
symbol a(2), b(2), c(2);
state q0(2), q1(2), q2(3), q3(1), q4(3), q5(0)*, q6(3);
start q0;
q0 -- a^13_23 --> q1; q1 -- b^32_312 --> q2; q1 -- b^12_2 --> q3;
q2 -- c^341_342 --> q4; q3 -- c^1_<> --> q5; q4 -- a^134_234 --> q6;
q6 -- b^324_314 --> q2; q6 -- b^123_3 --> q3;

}

Figure 6: Grappa RE specification of the automaton in Figure 4.
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transforms it into a DFA in the two-step process outlined in Section 2: Disambiguation is the
preprocessing step that ensures that the Powerset Construction really produces a deterministic
finite automaton, denoted here by Ad.

Similar to the string case, the DFA Ad can contain nondistinguishable states. These are states
that accept the same languages over graph symbols when starting in these states. Since sequences
of graph symbols are special cases of strings, one can use any standard algorithm to minimize
Ad by merging all non-distinguishable states. Grappa RE uses Hopcroft’s algorithm [15] with
an implementation provided by dk.brics.automaton [17], which yields an equivalent DFA A′

d.
The following steps in Figure 5 check if backtracking can be avoided when using A′

d to
recognize graphs. FEC Check checks if it has the FEC property (see Section 2), and TS Check
checks if it has the TS property using the algorithms described in [8]. If one of them fails,
efficient graph recognition cannot be guaranteed, and Grappa RE refuses to use A′

d for graph
recognition. However, if both succeed, Reorder Transitions then reorders the transitions of each
state as required by Algorithm 2 and described in [8]. In fact, this is done by topologically
sorting the (atom) transitions of each state according to a partial order obtained by the TS
check. The output of this step is a DFA A′′

d.
A′′

d is finally used in the Recognizer step that implements Algorithm 2. The input graph G
is either read from an external file in Json format, or it can be generated programmatically in
headless mode. This step checks if A′′

d (and therefore A) accepts G by finding a sequence s of
graph symbols such that G ∼= JsK. The result of this step, which can be visually inspected in
GUI mode, is described in Section 3.3.

The Recognizer step tries to recognize the input graph as described by Algorithm 2, i.e., by
selecting suitable edges of G step by step. Grappa RE provides two different implementations
of this edge selection: a simple implementation searches for a suitable edge iteratively and thus
takes linear time (in the number of edges of G). Graph recognition then takes quadratic time, as
shown in Section 4. However, Grappa RE also provides a more efficient selection implementation,
described in Section 3.2, which takes only constant time. Thus, Grappa RE can recognize graphs
in linear time, as claimed in [8] and demonstrated in Section 4.

3.1 Regular Expressions

Grappa RE also provides a second mode where the finite automaton is not specified directly
as in Figure 6, but by a regular expression. These regular expressions use graph symbols as
elementary symbols, but are otherwise structured like normal regular expressions. In particular,
they use concatenation and alternatives, as well as the Kleene star, with the same semantics
as in the string case. Each such expression corresponds in the usual way to a finite automaton
with the same language. However, not every regular expression over graph symbols is a valid
expression. Rather, the finite automaton corresponding to the expression may only accept valid
graph interpretations as sequences of graph symbols, i.e., the types of successive graph symbols
must match. Just as this can be ensured for automata (see Section 2), it is also possible for
regular expressions, as long as it is not just ε, because it does not have any type information,
i.e., how many front and rear nodes a corresponding graph has. Consequently, ε is not a valid
regular expression.

For example, the automaton shown in Figure 4 and Figure 6 can be more compactly described
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regexp abc {
symbol a(2), b(2), c(2);

a^13_23 b^12_2 c^1_<>
|
a^13_23 b^32_312 c^341_342
(a^134_234 b^324_314 c^341_342)*
a^134_234 b^123_3 c^1_<>

}

Figure 7: Regular expression for the automaton in Figure 4.

by the regular expression

a13
23 b12

2 c1
ε

∣∣∣ a13
23 b32

312 c341
342 (a134

234 b324
314 c341

342)∗ a134
234 b123

3 c1
ε.

Step RegExp Reader (see Figure 5) can read such a regular expression in textual format as
in Figure 7. This specification must also include a declaration of the ranked vocabulary of edge
labels. Graph symbols are then specified with the same syntax as in automata specifications
(e.g., Figure 6).

RegExp Reader also checks if the regular expression is valid, and RegExp Translator then
transforms it into an equivalent finite automaton, yielding A as an internal representation of
the resulting finite automaton. To implement this step, it again uses dk.brics.automaton [17],
which provides an implementation for the string case that can be used directly here. The
automaton A is then used in the same way as in the mode “Use automaton spec”.

3.2 Efficient Edge Selection

As described above, Grappa RE implements edge selection as used in Line 9 of Algorithm 2 in a
straightforward simple way and in an efficient proper way. We will refer to them as the simple
and efficient implementations, respectively.

To speed up edge selection, both implementations build a data structure before starting the
recognition process. The simple implementation simply collects lists of edges, where each list
contains all edges with the same label. When Line 9 needs to select an edge as specified by an
atom symbol ℓφ

ϱ , it inspects the list for ℓ and looks for the first edge attached to the current
nodes in F as specified by φ. Once a matching edge is found, it can be efficiently removed from
the list because it is implemented as a doubly linked list. However, the sequential search for
this edge takes linear time in the number of edges with the label ℓ. Section 4 shows that graph
recognition with this simple implementation then takes quadratic time and is rather slow.

The efficient implementation builds more sophisticated data structures before starting the
recognition process and uses techniques similar to those in Grappa for efficient graph pars-
ing [14]. It uses a two-step process:

1. In the first step, the automaton A′′
d (see Figure 5) is analyzed and all atom symbols in A′′

d
are collected in a set. This set contains all atom symbols that can specify an edge selection
(as in Line 9 in Algorithm 2). Each of the atom symbols ℓφ

ϱ specifies how the edge to be
selected must be connected to the current nodes in F . The other nodes of the edge, i.e.,
those that are not referred to by φ, must be nodes that have not been encountered before.
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This information is then used in the second step to collect suitable lists of edges, which
speeds up edge selection.

2. In the second step, lists of edges of the input graph G are collected, one list for each
situation that can occur during edge selection (as in Line 9 in Algorithm 2). Each of these
lists will contain all edges that are suitable in the corresponding situation.

As an example, consider the graph language anbncn and its DFA in Figure 4. It contains the
atom symbols a13

23, a134
234, b12

2 , b123
3 , b32

312, b324
314, c1

ε, and c341
342. Now consider the situation of selecting

an edge that matches ℓφ
ϱ = a13

23, F in Algorithm 2 must consist of two nodes, say F = (m1,m2). 1
at position 1 of φ = 13 indicates that one must choose an a-edge attached to two nodes (n1,n2)
such that n1 = m1, and n2 is not yet read since 2 does not occur in φ. Finding such an edge is
easy and takes only constant time if each node has a list of all a-edges connected to that node
as its first node. This is the usual association list approach. Note, however, that one cannot
select an a-edge whose second node has already been read. Consequently, one must remove
all a-edges from the corresponding association lists as soon as their second attached node has
been encountered. This can also be done efficiently if each edge keeps the information in which
association lists it is stored. Their number has an upper bound, which can be read from the
set of atom symbols of A′′

d. And removing edges from all these lists can also be done efficiently
if these lists are doubly linked lists and one keeps references to the corresponding list buckets.
Therefore, removing an edge from all corresponding lists also takes constant time.

However, keeping only simple association lists is not always sufficient to ensure constant time
edge selection. To see this, consider the Spikes graph language represented by

s124
134 (s134

124)∗ s123
ε

∣∣∣ s423
421 (s421

423)∗ s321
ε

∣∣∣ s143
243 (s243

143)∗ s123
ε

where label s has rank 3. We call these graphs Spikes because of their shape; Figure 8 shows
three of them. Nodes are drawn as circles, s-edges as rectangles connected to their attached
nodes. Numbers indicate the order of the attachments. Spikes graphs are of type (3,0). Nodes
of their front interfaces are indicated by lines to the left border, ordered from top to bottom.
Graph recognition must start with a unique edge; for the graphs in Figure 8 this is always the
edge attached to n1,n2,n3. The central node n1, which is connected to all edges of the graph,
can be any node of its front interface, as shown in Figure 8. Consequently, any front node can

Figure 8: Three Spikes graphs.
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be attached to any number of edges. Thus, it is impossible to select the unique starting edge
in constant time by simply accessing an association list of a front node. Instead, one must be
able to look up edges by pairs of their nodes, as can be seen in the following example: The first
alternative of the regular expression starts with s124

134, i.e., we are looking for an s-edge whose
first and second attached nodes are the first and second nodes in its front interface, i.e., n1 and
n2 for the left Spikes graph. This is only the case for the edge attached to n1,n2,n3.

Grappa RE uses hash tables to manage association lists for tuples of nodes and to allow
efficient edge lookup. The association lists are created and filled with edges before recognition
starts. The hash table lookup, and thus the association list lookup, takes constant time on
average because each hash table is fixed after preprocessing; only the contents of the association
lists are modified in the same way as described above. Since the number of atom symbols
occurring in a DFA is fixed, all these data structures require linear space in the size of the input
graph if each hash table size is chosen to be proportional to the number of all edges. In addition,
on average, setting up these data structures takes linear time in the size of the input graph.

3.3 Graphical User Interface

Grappa RE also provides a GUI that allows the user to interactively visualize the recognition
process. Specifically, as shown in Figure 9, the Grappa RE window is divided into three parts:
on the top left is a visualization of the input graph, on the top right is the visualization of the
minimized DFA and a bar to control execution, and at the bottom is the sequence of atoms
recognized during execution. Since the input graph does not provide any layout information, a
force-directed layout algorithm [2] is used to display it, which also allows the user to manually
move nodes by dragging them with the mouse. The same type of interface was used for the
DFA, where the initial state is highlighted in yellow and accepting states have a dashed border
instead.

The user can advance the execution of the DFA manually step by step by pressing the Next
button, or automatically at a selected time interval by pressing the Run button. During this
operation, the current state of the DFA is highlighted in red, as well as the edges representing
the transitions when they are followed. “Consumed” input graph elements are also highlighted
(in green) during execution, and it is also possible to click on them later to get information
about which transition marked them (as shown in Figure 9 below).

Finally, at the bottom, the sequence of atoms is shown as it was detected during recognition.
For ease of understanding, the user can also click the Merge button to replace the first two
atoms by their concatenation. This merging process is even animated. It is possible to keep
clicking this button to iteratively merge the two leftmost graphs until the bottom contains only
one graph, i.e., the concatenation of all the atoms at the beginning. The user can also save this
visualization as a graphic file in SVG format.

4 Examples and Experiments
To confirm that graph recognition with finite automata can indeed run in linear time as claimed
in Section 2 and [8], the recognition time was measured for graphs of four different graph
languages. The graph languages are anbncn and Spikes, as introduced in Sections 2 and 3,
respectively, and Palindromes and Wheels. Palindromes contains all graphs representing palin-
dromes over {a,b}, and Wheels contains all wheel graphs as defined in [12, p. 92] and shown in
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Figure 9: Two screenshots of Grappa RE with a graph representing aaabbbccc and the automaton
recognizing anbncn (see also Figure 4). Top: The current state sequence: Q0, Q1, Q2, Q4 and
Q6. Lower: Completed execution (accepted graph). A dialog tells you which transition has read
and marked a node by clicking on it, here b0. At the bottom you can see the result after the
user merged the first four atoms by clicking the Merge button four times.

Figure 10. The latter two are defined by

(a13
23 a32

31 | b13
23 b32

31)∗ (a13
23 a12

ε | b13
23 b12

ε | a12
ε | b12

ε ) Palindromes
tε
12 s32

123 (t314
324 s123

123)∗ t312
32 s12

ε Wheels

The experiments consisted of running graph recognition using both the simple and the effi-
cient edge selection algorithms (see Section 3.2) on input graphs of increasing size and measuring
the execution time of the recognition algorithm. They were run on a 2022 Mac Studio with an
Apple M1 Max processor, 64 GiB of RAM, and the Temurin 21 Java virtual machine. To get
more accurate measurements, each recognition run was repeated 40 times on the same graph,
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Figure 10: A wheel graph with six spokes.

shuffling the edges randomly each time to avoid any bias due to favorable or unfavorable ordering
of the edges. The average execution time was then calculated by excluding the four worst times
to exclude cases that were slowed down by garbage collection. The results of such executions are
shown in Figures 11 and 12 for the languages anbncn and Spikes, respectively. In the plots, the
x-axis shows the number of edges of the input graph and the y-axis shows the execution time in
seconds. They clearly show that the runtime for the simple implementation of edge selection is
quadratic and that the efficient implementation is indeed much faster.

In addition, Figure 13 compares the time taken to recognize graphs using only the efficient
edge selection algorithm for the four languages on larger input graphs; in this case, we reduced
the number of runs of each test from 40 to 6 in order to reduce the time required given the
larger size of the graphs. It can be seen that the increase in execution time remains linear even
when scaling up to large graphs with a million edges.

In addition to the recognition execution time, we also measured the time taken for the various
operations required to create the DFA for the four languages. The operations of generating the
automaton from a regular expression, checking the automaton for ambiguity, performing the
powerset construction, minimizing the DFA, and checking the DFA for the FEC property took
less than 1ms in total. Checking the TS property (and reordering the transitions) took on
average 7.5ms (between 6.8ms and 8.3ms). Since it is also possible to store the DFA resulting
from these operations and reuse it for recognition operations, the time taken by these operations
can be considered negligible.

Regarding the times shown in the graphs, in the case of the efficient edge selection imple-
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Figure 11: Recognizing anbncn graphs using
the simple and the efficient implementation.
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Figure 12: Recognizing Spikes graphs using
the simple and the efficient implementation.



M. De Rosa and M. Minas 15

0.0 0.2 0.4 0.6 0.8 1.0
·106

0.0

0.5

1.0

1.5

2.0

2.5

Graph size (number of edges)

R
un

ni
ng

tim
e

(s
ec

on
ds

)

Spikes
Palindromes

Wheels
anbncn

Figure 13: Recognizing different kinds of graphs using the efficient implementation.

mentation, they include both the time to generate the optimized data structures of the input
graph and the time to execute the DFA. In particular, the time to create the optimized data
structures was found to be about two-thirds of the total time, while the time to execute the
DFA was about one-third of the total time.

5 Conclusions

This paper has described Grappa RE , a tool for analyzing graphs in the sense that it decides
for a given graph whether it can be generated by a given finite automaton or not. Grappa RE
implements the approach recently proposed by Hoffmann, Drewes, and Minas [8], where graphs
are considered as interpretations of strings and finite automata are used to define a graph lan-
guage and also as a device for deciding the membership problem. In particular, Grappa RE
implements the procedures for checking whether a given automaton allows efficient graph recog-
nition. This paper has shown that the recognition is indeed linear in the size of the input graph,
and it has described the implementation approach that was necessary to achieve linear runtime
complexity. Experiments have shown that even very large graphs can be analyzed very quickly
with this implementation, since only about 2µs is needed to analyze each edge of the input
graph on standard computers.

Future work will consider applications of the approach described in [8], e.g., by using regular
expressions to be used in the nested graph conditions of Habel and Pennemann [13, 18] to specify
global graph properties and check them with automata.
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