
Databases – SQL

Jörg Endrullis

VU University Amsterdam

SQL :: Running Example

Example Database

Students
sid first last address
101 George Orwell London
102 Elvis Presley Memphis
103 Lisa Simpson Springfield
104 Bart Simpson Springfield
105 George Washington null

Exercises
category number topic maxPoints

exam 1 SQL 14
homework 1 Logic 10
homework 2 SQL 10

Results

sid → Students category → Exercises number → Exercises points
101 exam 1 12
101 homework 1 10
101 homework 2 8
102 exam 1 10
102 homework 1 9
102 homework 2 9
103 exam 1 7
103 homework 1 5

SQL :: Basic Syntax

Basic SQL Query Syntax

Basic SQL query (extensions follow)

select A1, . . . ,An
from R1, . . . ,Rm
where C

The from clause
. . . declares which table(s) are accessed.

The where clause
. . . specifies a condition for rows in these tables that are
considered in this query.
The absence of C is equivalent to true.

The select clause
. . . specifies the attributes of the result.
Here * means output all attributes occurring in R1, . . . ,Rm.

The From Clause

The from clause can be understood as declaring variables
that range over tuples of a relation.

Exercises
category number topic maxPoints

exam 1 SQL 14
homework 1 Logic 10
homework 2 SQL 10

select E.number, E.topic
from Exercises E
where E.category = 'homework'

Query Result

number topic
1 Logic
2 SQL

The query may be thought of as

for all rows E ∈ Exercises do
if E.category = 'homework' then

print E.number, E.topic
end if

end for

Tuple variable E iterates over the rows of Exercises.

The From Clause

For each table in the from clause there is a tuple variable.

If the the name of the tuple variable is not given explicitly,
the variable will have the name of the relation:

select Exercises.number, Exercises.topic
from Exercises
where Exercises.category = 'homework'

In other words, from Exercises is understood as:

from Exercises Exercises

If a tuple variable is explicitly declared, e.g.:

from Exercises E

then the implicit tuple variable Exercises is not declared
and Exercises.number will yield an error.

Attribute References

Students(sid, first, last, address) Results(sid, category, number, points)

Let R be a tuple variable and A an attribute of R.

Attributes are referenced in the form
R .A

If R is the only tuple variable with attribute A, then it suffices
A

For example,

select category, number, points
from Students S, Results R
where S.sid = R.sid

and first = 'George' and last = 'Orwell'

first, last can only refer to S

category, number, points can only refer to R

sid on its would be ambiguous (could refer to S or R)

Ambiguous Attribute References

Exercises(category, number, topic, maxPoints)

Results(sid, category, number, points)

Consider the following query:

select number, sid, points, maxPoints
from Results R, Exercises E
where R.number = E.number

and R.category = 'homework' and E.category = 'homework'

In the select clause number is ambiguous.

Although forced to be equal by the join condition, SQL requires
the user to specify whether number refers to R or E.

The unambiguity check is purely syntactic and does not
depend on the query semantics.

SQL :: Joins

Joins

Students(sid, first, last, address) Results(sid, category, number, points)

Consider a query with two tuple variables:

select A1, . . . ,An
from Students S, Results R
where C

S ranges over 5 rows in Students,
R ranges over 8 rows in Results.

Conceptually, all 5 · 8 = 40 combinations will be considered:

for all rows S ∈ Students do
for all rows R ∈ Results do

if C then
print A1, . . . ,An

end if
end for

end for

Joins

A good DBMS will use a better evaluation algorithm
(depending on the condition C).

This is the task of the query optimiser.

For example, if C contains the join condition
S.sid = R.sid

then the DBMS might execute the query efficiently by:
loop over the row in Results,
find matching Students row via an index on Students.sid

DBMS typically create an index over the key attributes.

For understanding the semantics of a query, the simple nested
foreach algorithm suffices!
The query optimiser may use any algorithm that produces the
exact same output (except possibly the tuple order).

Joins

A join needs to be explicitly specified in the where clause:

select category, number, points
from Students S, Results R
where S.sid = R.sid -- Join Condition

and first = 'George' and last = 'Orwell'

Students
sid first last address
101 George Orwell London
102 Elvis Presley Memphis
103 Lisa Simpson Springfield
104 Bart Simpson Springfield
105 George Washington null

Results

sid category number points
101 exam 1 12
101 homework 1 10
101 homework 2 8
102 exam 1 10
102 homework 1 9
102 homework 2 9
103 exam 1 7
103 homework 1 5

Output of this query?
select S.first, S.last
from Students S, Results R
where category = 'homework' and number = 1

Joins

It is almost always an error if there are two tuples variables
which are not linked (directly or indirectly) via join conditions.

In this query, all three tuple variables are connected:

select S.first, S.last, E.category, E.number
from Students S, Results R, Exercises E
where S.sid = R.sid

and R.category = E.category and R.number = E.number

The tuple variable are connected as follows:

S R E
S.sid = R.sid R.category = E.category

and R.number = E.number

Typically (just like in this example), the conditions correspond to
the foreign key relationships between the tables.

Exercise

Students(sid, first, last, address)
Exercises(category, number, topic, maxPoints)
Results(sid→ Students, (category, number)→ Exercises, points)

Formulate the following query in SQL
The topics of all exercises solved by George Orwell?

We need tuple variables for Students and Exercises.

select E.topic
from Students S, Exercises E
where S.first = 'George' and S.last = 'Orwell'

Problem: S and E are unconnected!

Exercise

Students(sid, first, last, address)
Exercises(category, number, topic, maxPoints)
Results(sid→ Students, (category, number)→ Exercises, points)

Formulate the following query in SQL
The topics of all exercises solved by George Orwell?

The connection graph with foreign key relations:

Students Results Exercises

We establish the link via a tuple variable R over Results:

select E.topic
from Students S, Exercises E, Results R
where S.first = 'George' and S.last = 'Orwell'

and S.sid = R.sid
and R.category = E.category and R.number = E.number

Cycles in the Connection Graph

The connection graph may contain cycles, which makes the
selection of the “right path” more difficult (and error-prone).

A database of course enrolments, could have the cycle:

Students

Teaching Assistants

Enrolments

Courses

Unnecessary Joins

Do not join more tables than needed.
Query will run slowly if the optimizer overlooks the redundancy.

Students(sid, first, last, address)
Exercises(category, number, topic, maxPoints)
Results(sid→ Students, (category, number)→ Exercises, points)

Results for homework 1
select R.sid, R.points
from Results R, Exercises E
where R.category = E.category and R.number = E.number

and E.category = 'homework' and E.number = 1

Will the following query produce the same Results?
select sid, points
from Results R
where R.category = 'homework' and R.number = 1

Unnecessary Joins

Exercises
category number topic maxPoints

exam 1 SQL 14
homework 1 Logic 10
homework 2 SQL 10

Results

sid category number points
101 exam 1 12
101 homework 1 10
101 homework 2 8
102 exam 1 10
102 homework 1 9
102 homework 2 9
103 exam 1 7
103 homework 1 5

What will be the result of this query?
select R.sid, R.points
from Results R, Exercises E
where R.category = 'homework' and R.number = 1

Unnecessary Joins

Students
sid first last address
101 George Orwell London
102 Elvis Presley Memphis
103 Lisa Simpson Springfield
104 Bart Simpson Springfield
105 George Washington null

Results

sid category number points
101 exam 1 12
101 homework 1 10
101 homework 2 8
102 exam 1 10
102 homework 1 9
102 homework 2 9
103 exam 1 7
103 homework 1 5

Is there any difference between these two queries?
select S.first, S.last
from Students S

select distinct S.first, S.last
from Students S, Results R
where S.sid = R.sid

SQL :: Self Joins

Self Joins

In some query scenarios, we might have to consider more than
one tuple of the same relation to generate a result tuple.

Students(sid, first, last, address)
Exercises(category, number, topic, maxPoints)
Results(sid→ Students, (category, number)→ Exercises, points)

Is there a student with 9 points for both, homework 1 & 2?
select S.first, S.last
from Students S, Results H1, Results H2
where S.sid = H1.sid and S.sid = H2.sid

and H1.category = 'homework' and H1.number = 1
and H2.category = 'homework' and H2.number = 2
and H1.points = 9 and H2.points = 9

Self Joins
Students that solved at least two homework assignments

(This may also be solved using aggregations.)

select S.first, S.last
from Students S, Results R1, Results R2
where S.sid = R1.sid and R1.category = 'homework'

and S.sid = R2.sid and R2.category = 'homework'

“Unexpected” result
What is going wrong here?

We need to ensure that R1 and R2 refer to distinct results:
...
and (R1.sid <> R2.sid or

R1.category <> R2.category or
R1.number <> R2.number)

SQL :: Duplicate Elimination

Duplicate Elimination

A core difference between SQL and relational algebra is that
duplicates have to explicitly eliminated in SQL.

Which Exercises have been solved by at least one student?

select category, number
from Results

category number
exam 1
exam 1
exam 1
...

...

The distinct modifier may be applied to the select clause to
request explicit duplicate row elimination

select distinct category, number
from Results

category number
exam 1

homework 1
homework 2

Unexpected duplicates in the result can be a sign of mistakes!

Avoid Unnecessary Duplicate Elimination

Sufficient condition for superfluous distinct

Assumption: where clause is a conjunction (and).

1. Let K be the set of attributes in the select clause.

2. If A = c in the where clause and c a constant, add A to K.
3. If A = B in the where clause and B ∈ K, add A to K.
4. If K has a key of a variable X , add all attributes of X to K.

5. Repeat 2, 3 and 4 until K is stable.

If K contains a key of every tuple variable listed under from,
then distinct is superfluous.

Intuition behind the algorithm: think of K as the set of attributes
that are uniquely determined by the result.

Avoid Unnecessary Duplicate Elimination

select distinct S.first, S.last, R.number, R.points
from Students S, Results R
where R.category = 'homework' and R.sid = S.sid

Let us assume that { first, last } is a key for Students.
1. Initialise K = { S.first, S.last, R.number, R.points }.
2. K + { R.category } because of R.category = 'homework'

4. K+ { S.sid, S.address } since K contains a key of Students
3. K + { R.sid } because of the conjunct S.sid = R.sid

Finally, K contains a key of
Students S { S.first, S.last } and
Results R { R.sid, R.cat, R.eno }

Thus distinct is superfluous.

If { first, last } is not key of Students, the test would fail.
Rightly so, since then the result could contain duplicates.

Query Formulation Traps

Typical mistakes

Missing join conditions (very common).

Unnecessary joins (may slow query down significantly).

Self joins: incorrect treatment of multiple variables ranging
over the same relation (missing (in)equality conditions).

Unexpected duplicates, often an indicator for faulty
queries (adding distinct is no cure here).

Unnecessary distinct (may slow query down).

SQL :: Non-Monotonic Queries

Non-Monotonic Behaviour

SQL queries using only the constructs introduced so far
compute monotonic functions on the database state:

if further rows gets inserted,
these queries yield a superset of rows.

However, not all queries behave monotonically in this way.

Example of a non-monotonic query

Query: find students who have not submitted any homework.
Currently, Bart Simpson would be a correct answer.
This answer is no longer valid after:
insert into Results values (104, 'homework', 1, 8)

Such non-monotonic queries cannot be formulated with the
SQL constructs that we have seen so far.

Non-Monotonic Behaviour

In natural language, queries that contain formulations like

“there is no”
“does not exists”

}
negated existential
quantification

“for all”
“the minimum/maximum”

}
universally quantification

indicate non-monotonic behaviour.

In an equivalent SQL formulation of such queries, this boils
down to a test whether a query yields a (non-)empty result.

SQL :: Not In

Not In

With
in

not in

it is possible to check whether an attribute value appears in a
set of values computed by another SQL subquery.

Students without any homework result
select first, last
from Students
where sid not in (select sid

from Results
where category = 'homework')

Query Result

first last
Bart Simpson

George Washington

Not In

select first, last
from Students
where sid not in (select sid

from Results
where category = 'homework')

Conceptually . . .
The subquery is evaluated before the main query:

Students
sid first last address
101 George Orwell London
102 Elvis Presley Memphis
103 Lisa Simpson Springfield
104 Bart Simpson Springfield
105 George Washington null

Subquery result
sid

101
102
103

Then, for every tuple of Students, a matching sid is searched in
the subquery result. If there is none, the tuple is output.

Not In

In SQL-86,
subquery is required to deliver a single output column

In SQL-92,
comparisons where extended to the tuple level.

It is thus valid to write, e.g.:

...
where (A,B) not in (select C,D from . . .)

Not In

Exercises(category, number, topic, maxPoints)

Results(sid, category, number, points)

Topics of homework tasks solved by at least one student
select topic
from Exercises
where category = 'homework'

and number in (select number
from Results
where category = 'homework')

Is there a difference to this query?
(with or without distinct)
select distinct topic
from Exercises E, Results R
where E.category = 'homework'

and R.category = 'homework'
and E.number = R.number

SQL :: Not Exists

Not Exists

The construct not exists enables the main (or outer) query to
check whether the subquery result is empty.

Students that have not submitted any homework
select first, last
from Students S
where not exists (select *

from Results R
where R.category = 'homework'
and R.sid = S.sid)

In the subquery, tuple variables declared in the from clause of
the outer query may be referenced.

Then the outer query and subquery are correlated.
The subquery is said to be “parameterized”.

You may also do so for in subqueries.

Not Exists
Students that have not submitted any homework
select first, last
from Students S
where not exists (select *

from Results R
where R.category = 'homework'
and R.sid = S.sid)

Query Result

first last
Bart Simpson

George Washington

Conceptually . . .
Tuple variable S loops over the 5 rows in Students.

The subquery is evaluated 5 times.

The DBMS is free to choose a more efficient equivalent evaluation strategy
(for instance, query unnesting).

Not Exists
Students that have not submitted any homework
select first, last
from Students S
where not exists (select *

from Results R
where R.category = 'homework'
and R.sid = S.sid)

First, S is the Students tuple
sid first last address
101 George Orwell London

In the subquery, S.sid is instantiated by 101:
select *
from Results R
where R.category = 'homework'
and R.sid = 101

Query Result
sid category number points
101 homework 1 10
101 homework 2 8

The result is non-empty. Thus the not exists is false for this S.

Not Exists
Students that have not submitted any homework
select first, last
from Students S
where not exists (select *

from Results R
where R.category = 'homework'
and R.sid = S.sid)

Finally, S is the Students tuple
sid first last address
105 George Washington null

In the subquery, S.sid is instantiated by 105:
select *
from Results R
where R.category = 'homework'
and R.sid = 105

Query Result
sid category number points

(no rows selected)

The result is empty. So the not exists is true for this S.

Not Exists

The subquery may use tuple variables from outer query.
The converse is illegal!

Wrong!

select first, last, R.number
from Students S
where not exists (select *

from Results R
where R.category = 'homework'
and R.sid = S.sid)

Compare this to variable scoping (global/local variables) in
block-structured programming languages (Java, C).

Subquery tuple variables declarations are “local.”

Not Exists

Non-correlated subqueries with not exists are almost
always an indication of an error!

Wrong!
select first, last
from Students S
where not exists (select *

from Results R
where category = 'homework')

If there is at least one homework result, then the overall result
will be empty.

Non-correlated subqueries evaluate to a set/relation constant
and may make perfect sense (e.g., when used with (not) in).

Exists

We can also use exists without negation:

Who has submitted at least one homework?
select sid, first, last
from Students S
where exists (select *

from Results R
where R.sid = S.sid
and R.category = 'homework')

Query Result

sid first last
101 George Orwell
102 Elvis Presley
103 Lisa Simpson

Can we reformulate the above without using exists?

SQL :: For All

For All

Existential quantifier: ∃X (ϕ)

Meaning: There is an X that satisfies formula ϕ.
Universal quantifier: ∀X (ϕ)

Meaning: For all X , formula ϕ is satisfied (true).

SQL does not offer a universal quantifier (∀, “for all”).

SQL offers only the existential quantifier exists.
However, there is a restricted form: >= all.

This is no problem because

∀X (ϕ) ⇐⇒ ¬∃X (¬ϕ)

The following two statements are equivalent:
All cars are red.
There exists no car that is not red.

For All & Implication

SQL does also not have⇒. The commonly used pattern
∀X (α⇒ β)

becomes
∀X (α⇒ β)

≡ ¬∃X ¬(α⇒ β)

≡ ¬∃X ¬(¬α∨ β)

≡ ¬∃X (α∧ ¬β)

Exercise: For All & Implication

Exercises(category, number, topic, maxPoints)

Results(sid, category, number, points)

Who got the best result for homework 1?
Construct the SQL query!

In natural language: the students S that have a result X for
homework 1 such that for all result Y for homework 1 it holds
that Y.points is less or equal to X.points.

In predicate logic (tuple relational calculus):

{ S | S ∈ Students ∧ X ∈ Results ∧ S.sid = X.sid

∧ X.category = 'homework' ∧ X.number = 1

∧ ∀ Y
(
(Y ∈ Results

∧ Y.category = 'homework'∧ Y.number = 1)⇒ Y.points 6 X.points
)
}

Exercise: For All & Implication

∀X (ϕ1 ⇒ ϕ2) ≡ ¬∃X (ϕ1 ∧ ¬ϕ2)

The formula

{ S | S ∈ Students ∧ X ∈ Results ∧ S.sid = X.sid

∧ X.category = 'homework' ∧ X.number = 1

∧ ∀ Y
(
(Y ∈ Results

∧ Y.category = 'homework'∧ Y.number = 1)⇒ Y.points 6 X.points
)
}

is logically equivalent to

{ S | S ∈ Students ∧ X ∈ Results ∧ S.sid = X.sid

∧ X.category = 'homework' ∧ X.number = 1

∧ ¬∃ Y
(
(Y ∈ Results

∧ Y.category = 'homework'∧ Y.number = 1)

∧ Y.points > X.points
)
}

Exercise: For All & Implication

We translate the formula into an SQL query:

{ S | S ∈ Students ∧ X ∈ Results ∧ S.sid = X.sid

∧ X.category = 'homework' ∧ X.number = 1

∧ ¬∃ Y
(
(Y ∈ Results

∧ Y.category = 'homework'∧ Y.number = 1)

∧ Y.points > X.points
)
}

Who got the best result for homework 1?
select first, last, points
from Students S, Results X
where S.sid = X.sid

and X.category = 'homework' and X.number = 1
and not exists

(select *
from Results Y
where Y.category = 'homework' and Y.number = 1

and Y.points > X.points)

SQL :: Nested Subqueries

Nested Subqueries

Subqueries may be nested!

List the students who solved all homework assignments
select first, last
from Students S
where not exists

(select *
from Exercises E
where category = 'homework'
and not exists

(select *
from Results R
where R.sid = S.sid

and R.number = E.number
and R.category = E.category))

Inner query: all results for student S and homework E.
Middle query: homework of student S for which no result exists.
Outer query: students that have no homework without results.

Common Errors

Does this query compute the student with the best result
for homework 1?
select distinct S.first, S.last, X.points
from Students S, Results X, Results Y
where S.sid = X.sid

and X.category = 'homework' and X.number = 1
and Y.category = 'homework' and Y.number = 1
and X.points > Y.points

If not, what does the query compute?

Common Errors

Students(sid, first, last, address) Results(sid, category, number, points)

Return those Students which did not solve homework 1
select first, last
from Students S
where not exists

(select *
from Results R, Students S
where R.sid = S.sid

and R.category = 'homework' and R.number = 1)

Quiz
What goes wrong here?

Subqueries bring up the concept of variable scoping (just like
in programming languages) and related pitfalls.

Common Errors

Students(sid, first, last, address)
Exercises(category, number, topic, maxPoints)
Results(sid→ Students, (category, number)→ Exercises, points)

Find those students who have neither submitted a home-
work nor participated in any exam
select first, last
from Students
where sid not in (select sid

from Exercises)

What is the error in this query?
What is the output of this query? Fix the query.

SQL :: All, Any, Some

All, Any, Some

SQL allows to compare single value with all values computed
by a single-column subquery. Such comparisons may be

universally (all), or
existentially (any, or equivalently some)

quantified.

Who got the best result for homework 1?
select S.first, S.last, X.points
from Students S, Results X
where S.sid = X.sid

and X.category = 'homework' and X.number = 1
and X.points >= all (select Y.points

from Results Y
where Y.category = 'homework'
and Y.number = 1)

The subquery must yield a single result column.

All, Any, Some

This query is equivalent to the previous query (but uses any):
select S.first, S.last, X.points
from Students S, Results X
where S.sid = X.sid

and X.category = 'homework' and X.number = 1
and not X.points < any (select Y.points

from Results Y
where Y.category = 'homework'

and Y.number = 1)

Note: { all, any, some } do not extend SQL’s expressiveness.

The statement
A < any (select B from . . . where . . .)

is equivalent to
exists (select B from . . . where . . . and A < B)

The statement x in S is equivalent to x = any S.

SQL :: Single Value Subqueries

Single Value Subqueries

If none of the keywords all, any, some are present, i.e.
. . . where x = (select A from . . .) ,

the subquery must yield single column and at most one row.
So the comparison is between atomic values.

Students(sid, first, last, address)
Exercises(category, number, topic, maxPoints)
Results(sid→ Students, (category, number)→ Exercises, points)

Who got full points for homework 1?
select S.first, S.last
from Students S, Results R
where S.sid = R.sid and R.category = 'homework' and R.number = 1

and R.points = (select maxPoints
from Exercises
where category = 'homework' and number = 1)

Why is this query guaranteed to return a single column & row?

Single Value Subqueries

Use constraints to ensure that the query returns only one row!
The DBMS will yield a runtime error if the subquery returns two or more rows.

If the subquery has an empty result, the null value is returned.

Bad style!
select first, last
from Students S
where (select 1

from Results R
where R.sid = S.sid

and R.category = 'homework'
and R.number = 1) is null

SQL :: Views & Subqueries under From

Subqueries under From

Since an SQL query returns a table, it makes sense to use a
subquery wherever a table might be specified.

SQL allows subqueries in the from clause.

Points (in %) achieved in homework exercise 1
select X.sid, (X.points * 100 / X.maxPoints) as percent
from (select E.category, E.number, R.sid, R.points, E.maxPoints

from Exercises E, Results R
where E.category = R.category and E.number = R.number) X

where X.category = 'homework' and X.number = 1

Note: join of Results and Exercises is computed in a subquery.

One use of subqueries under from are nested aggregations.

Subqueries under From

Inside the subquery, tuple variables introduced in the same
from clause may not be referenced.

�

Not allowed in SQL!
select S.first, S.last, X.number, X.points
from Students S, (select R.number, R.points

from Results R
where R.category = 'homework'
and R.sid = S.sid) X

Subqueries under From

A view declaration registers a query (not a query result)
under a given identifier in the database.

View: homework points
create view HomeworkPoints as
select S.first, S.last, R.number, R.points
from Students S, Results R
where S.sid = R.sid and R.category = 'homework'

In queries, views may be used like stored tables:
select number, points
from HomeworkPoints
where first = 'George' and last = 'Orwell'

Views may be thought of as subquery macros

SQL :: Aggregation Functions

Aggregations

Aggregation functions are functions from a set or multiset to
a single value, e.g.,

min {42,57,5,13,27 } = 5

They take as input the values of an entire column.

Aggregation functions are also known as
group functions, or
column functions

Typical use: statistics, data analysis, report generation.

Aggregations

SQL-92 defines the five main aggregation functions
count, sum, avg, max, min

Some DBMS define more functions:
correlation, stddev, variance, . . .

How many Students in the current database state?

select count(*)
from Students

count(*)
5

Some aggregation functions are sensitive to duplicates:
sum, count, avg ,

some are insensitive:
min, max

SQL allows to explicitly request to ignore duplicates, e.g.:
· · · count(distinct A) · · ·

Simple Aggregations

Simple aggregations feed the value set of an entire column
into an aggregation function.
Below, we will discuss partitioning (or grouping) of columns.

Best and average result for homework 1?
select max(points), avg(points)
from Results
where category = 'homework' and number = 1

max(points) avg(points)
10 8

Simple Aggregations

Students(sid, first, last, address)
Exercises(category, number, topic, maxPoints)
Results(sid→ Students, (category, number)→ Exercises, points)

How many Students have submitted a homework?
select count(distinct sid)
from Results
where category = 'homework'

count(distinct sid)
3

What is the total number of points student 101 got for her
homeworks?

select sum(points) as "total points"
from Results
where sid = 101 and category = 'homework'

total points
18

Simple Aggregations

SQL also allows to write formulas

What average percentage of the maximum points did the
students reach for homework 1?
select avg(R.points / E.maxPoints) * 100
from Results R, Exercises E
where R.category = 'homework' and R.number = 1

and E.category = 'homework' and E.number = 1

Homework points for student 101 plus 3 bonus points.
select sum(points) + 3 as "total homework points"
from Results
where sid = 101 and category = 'homework'

Restrictions

The following are not allowed:

Simple aggregations may not be nested (makes no sense):
Wrong!
· · · sum(avg(A)) · · ·

Aggregations may not be used in the where clause:

Wrong!
· · · where sum(A) > 100 · · ·

If an aggregation function is used without group by,
no attributes may appear in the select clause:

Wrong!
select category, number, avg(points)
from Results

Null Values and Aggregations

Usually, null values are ignored (filtered out) before the
aggregation operator is applied.
Exception:

count(*) counts null values
count(*) counts rows, not attribute values

If the input set is empty, aggregation functions yield null.
Exception: count returns 0.

A bit counter-intuitive for sum as one might expect 0.
However, allows to detect the difference between:

all column values null, or
values that sum up to 0.

SQL :: Aggregations with Group By and Having

Group By

“Group by” partitions the rows of a table into disjoint groups:
based on value equality for the group by attributes.

Aggregation functions applied for each group separately.

Average points for each homework
select number, avg(points)
from Results
where category = 'homework'
group by number

number avg(points)
1 8
2 8.5

All tuples agreeing in their number values for a group:
sid category number points
101 homework 1 10
102 homework 1 9
103 homework 1 5

101 homework 2 8
101 homework 2 9

Group By

The groups are formed after the evaluation of the from and
where clauses. Aggregation is subsequently done for every
group (yielding as many rows as groups).

The group by never produces empty groups.

The group by attributes may be used in the select clause since
they have a unique value for every group.

A reference to any other attribute is illegal.

Wrong!
select E.number, E.topic, avg(R.points)
from Exercises E, Results R
where E.category = 'homework'

and R.category = 'homework' and E.number = R.number
group by E.number

Wrong, although E.number functionally determines E.topic which thus is
unique (for every group).

Group By

Grouping by E.number and E.topic yields the desired result!

select E.number, E.topic, avg(R.points)
from Exercises E, Results R
where E.category = 'homework'

and R.category = 'homework' and E.number = R.number
group by E.number, E.topic

E.number E.topic avg(points)
1 Rel.Alg. 8
2 SQL 8.5

Now the DBMS has a syntactic clue that E.topic is unique.

The order of the group by attributes is not important.

Group By

Is there any semantical difference between these queries?
select topic, avg(points / maxPoints)
from Exercises E, Results R
where E.category = 'homework' and R.category= 'homework'

and E.number = R.number
group by topic

select topic, avg(points / maxPoints)
from Exercises E, Results R
where E.category = 'homework' and R.category= 'homework'

and E.number = R.number
group by topic, E.number

Having

Aggregations may not be used in the where clause.

With group by, however, it makes sense to filter out entire
groups based on some aggregated group property.

This is possible with SQL’s having clause.

For example, only groups of size greater than n tuples.
select ... -- output columns
from ... -- what tuples
where ... -- filter tuples
group by ... -- group tuples
having count(*) > n -- filter groups

The condition in the having clause may (only) involve
aggregation functions.

Having

Students(sid, first, last, address)
Exercises(category, number, topic, maxPoints)
Results(sid→ Students, (category, number)→ Exercises, points)

Which Students got at least 18 homework points?
select first, last
from Students S, Results R
where S.sid = R.sid and R.category = 'homework'
group by S.sid, first, last
having sum(points) >= 18

first last
George Orwell
Elvis Presley

The where clause refers to single tuples.
The having clause applies to entire groups.

Where vs. Having

The having clause should not contain direct attribute
references, only aggregation functions.

This is wrong
select first, last
from Students S, Results R
group by S.sid, R.sid, first, last
having S.sid = R.sid and sum(points) >= 18

This is correct
select first, last
from Students S, Results R
where S.sid = R.sid
group by S.sid, first, last
having sum(points) >= 18

SQL :: Aggregation Subqueries

Aggregation Subqueries

Who has the best result for homework 1?
select S.first, S.last, R.points
from Students S, Results R
where S.sid = R.sid

and R.category = 'homework' and R.number = 1
and R.points = (select max(points)

from Results
where category = 'homework'

and number = 1)

Remember: earlier we solved this using any/ all.

The aggregate in the subquery is guaranteed to yield exactly
one row as required.

Aggregation Subqueries in Select

Aggregation subqueries may be used in the select clause.

This sometimes can be used to replace group by.

The homework points of the individual Students.
select first, last, (select sum(points)

from Results R
where R.sid = S.sid

and R.category = 'homework'
) as homeworkPoints

from Students S

Nested Aggregations

Nested aggregations require a subquery in the from clause.

What is the average number of homework points (excluding
those Students who did not submit anything)?
select avg(X.homeworkPoints)
from (select sid, sum(points) as homeworkPoints

from Results
where category = 'homework'
group by sid) X

X

sid homeworkPoints
101 18
102 18
103 5

avg(X.homeworkPoints)
13.67

Maximizing Aggregations

Who has the best overall homework result?
(maximum sum of homework points)
select first, last, sum(points) as total
from Students S, Results R
where S.sid = R.sid and R.category = 'homework'
group by S.sid, first, last
having sum(points)

>= all (select sum(points)
from Results
where category = 'homework'
group by sid)

Alternatively, we could use a view to solve this (next slide).

Maximizing Aggregations

View: total number of homework points for each student.
create view HomeworkPoints as
select sid, sum(points) as total
from Results
where category = 'homework'
group by sid

Alternative formulation of query on previous slide.
select S.first, S.last, H.total
from Students S, HomeworkPoints H
where S.sid = H.sid

and H.total = (select max(total)
from HomeworkPoints)

SQL :: Union & Case & Coalesce

Union

“Union” allows to combine the results of two queries.

This is needed since there is no other method to construct one
result column that draws from different tables/columns.

“Union” is necessary, for example, if specialisations of a
concept (“subclasses”) are stored in separate tables.

For instance, if we have tables
graduate_courses and
undergraduate_courses

both of which are specialisations of the concept course.

“Union” is also commonly used for case analysis (cf., the
if . . . then . . . cascades in programming languages).

Union

Total number of homework points for every student
select S.first, S.last, sum(R.points) as total
from Students S, Results R
where S.sid = R.sid and R.category = 'homework'
group by S.sid, S.first, S.last

union all

select S.first, S.last, 0 as total
from Students S
where S.sid not in (select sid

from Results
where category = 'homework')

Union

Assigning student grades based on homework 1
select S.sid, S.first, S.last, 'A' as grade
from Students S, Results R
where S.sid = R.sid

and R.category = 'homework' and R.number = 1
and R.points >= 9

union all

select S.sid, S.first, S.last, 'B' as grade
from Students S, Results R
where S.sid = R.sid

and R.category = 'homework' and R.number = 1
and R.points >= 7 and R.points < 9

union all

...

Union

The union operand subqueries must return tables with the
same number of columns and compatible data types.

Columns correspondence is by column position (1st, 2nd,. . .).
Column names need not be identical.

SQL distinguishes between
union: with duplicate elimination, and
union all: concatenation (duplicates retained).

Other SQL-92 set operations:
except (A − B)
intersect (A ∩ B)

These do not add to the expressivity of SQL.

How?

Conditional Expressions

“Union” is the portable way to conduct a case analysis.

Sometimes a conditional expression suffices & more efficient.

Conditional expression syntax varies between DBMSs.
Oracle uses decode(· · ·), for example.

Here, we will use the SQL-92 syntax.

Assigning student grades based on homework 1
select S.sid, case when points >= 9 then 'A'

when points >=7 and points < 9 then 'B'
when points >=5 and points < 7 then 'C'

else 'F' end as 'grade'
from Students S, Results R
where S.sid = R.sid

and R.category = 'homework' and R.number = 1

Conditional Expressions

A typical application is to replace a null value by a value Y :

· · · case when X is not null then X else Y end · · ·

In SQL-92, this may be abbreviated to
· · · coalesce (X, Y)· · ·

List the addresses of all students
select first, last, coalesce(address, '(unknown)')
from Students

SQL :: Order By

Sorting Output

If query output is to be read by humans, enforcing a certain
tuple order helps in interpreting the result.

“Order by” allows to specify a list of sorting criteria.

Without such an ordering, the order is unpredictable:
Depends on the internal algorithms of the query optimiser.
Order may change even query to query.

order by attribute1 [asc|desc], attribute2 [asc|desc], . . .

An order by clause may specify multiple attribute names:
The second attribute is used for tuple ordering if they agree
on the first attribute, and so on (lexicographic ordering).
Sort in ascending order (default): asc,
Sort in descending order: desc.

Sorting Output

Homework Results sorted by exercise (best result first).
In case of a tie, sort alphabetically by student name.
select R.number, R.points, S.first, S.last
from Students S, Results R
where S.sid = R.sid and R.category = 'homework'
order by R.number, R.points desc, S.last, S.first

First, compare R.number.
If the first criterion leads to a tie, compare points desc.
If we still have a tie, compare S.last.
If we still have a tie, compare S.first.

number points first last
1 10 George Orwell
1 9 Elvis Presley
1 5 Lisa Simpson
2 9 Elvis Presley
2 8 George Orwell

Sorting Output

In some application scenarios it is necessary to add columns
to a table to obtain suitable sorting criteria.

If the Students names were stored in the form 'George␣Orwell',
sorting by last name is more or less impossible. Having
separate columns for first and last name is better.

Null values are all listed first or all listed last in the sorted
sequence (depending on the database).

Since the effect of order by is purely “cosmetic”,
order by may not be applied to a subquery.

SQL :: Left & Right Outer and Inner Joins

Joins

Up to version SQL-86, there were no explicit joins in queries.
Instead, Cartesian products of relations filtered via where.

select R.category, R.number, sid, points, topic, maxPoints
from Results R, Exercises E
where R.category = E.category and R.number = E.number

Since SQL-92 there are explicit join operations.

Natural Joins

“Natural join” in SQL-92
select sid, number, (points / maxPoints) * 100
from Results natural join Exercises
where category = 'homework'

Note the use of natural join!

DBMS to automatically add the join predicate to the query:

Results.category = Exercises.category
and Results.number = Exercises.number

In a natural join, the join predicate arises implicitly by
comparing all columns with the same name in both tables.

Specifying the Join Predicate

The join predicate may be specified as follows:

natural prepended to join operator name.

Results natural join Exercises

Yields comparison of columns with the same name.

using (A1, ..., An) after the second table.
Results join Exercises using (category,number)

The Ai must be columns appearing in both tables. The join
predicate then is R.A1 = S.A1 and . . . and R.An = S.An.

on (condition) after the second table.
Students S join Results R on (S.sid = R.sid)

The matching condition works similar to the where clause,
but is important in combination with left/right joins.

The cross join operator (next slide) has no join predicate.

Inner and Outer Joins

SQL-92 supports the following join types ([..] is optional):
[inner] join: usual join
left [outer] join: preserves rows of left table
right [outer] join: preserves rows of right table
full [outer] join: preserves rows of both tables
cross join: Cartesian product (all combinations)

A join (1) eliminates tuples without partner.
A B
a1 b1
a2 b2

1

B C
b2 c2
b3 c3

=
A B C
a2 b2 c2

The left outer join preserves all tuples in its left argument:
A B
a1 b1
a2 b2

|1

B C
b2 c2
b3 c3

=

A B C
a1 b1 (null)
a2 b2 c2

Inner and Outer Joins

The right outer join preserves all tuples in its right argument:
A B
a1 b1
a2 b2

1|

B C
b2 c2
b3 c3

=

A B C
a2 b2 c2

(null) b3 c3

The full outer join preserves all tuples in both arguments:

A B
a1 b1
a2 b2

|1|

B C
b2 c2
b3 c3

=

A B C
a1 b1 (null)
a2 b2 c2

(null) b3 c3

The cross join is the Cartesian product:

A B
a1 b1
a2 b2

×
B C
b2 c2
b3 c3

=

A B B C
a1 b1 b2 c2
a1 b1 b3 c3
a2 b2 b2 c2
a2 b2 b3 c3

Inner and Outer Joins

Students(sid, first, last, address)
Exercises(category, number, topic, maxPoints)
Results(sid→ Students, (category, number)→ Exercises, points)

Number of submission per homework (0 if no submission)
select E.number, count(sid)
from Exercises E left outer join Results R

on E.category = R.category and E.number = R.number
where E.category = 'homework'
group by E.number

All Exercises are present in the result of the left (outer) join.
for exercises without solutions, sid and points will be null

count(sid) ignores rows where sid is null.

Could also be solved using union, but less elegant (longer).

Inner and Outer Joins

Students(sid, first, last, address)
Exercises(category, number, topic, maxPoints)
Results(sid→ Students, (category, number)→ Exercises, points)

Exercises with corresponding submissions in different ways. . .
Join with on

select *
from Exercises E left outer join Results R

on E.category = R.category and E.number = R.number

Join with using

select *
from Exercises E left outer join Results R

using (category, number)

Join with natural

select *
from Exercises E natural left outer join Results R

Inner and Outer Joins

Is there a problem with the following query?
“Number of homeworks solved per student (including 0).”

select first, last, count(number)
from Students S left outer join Results R

on S.sid = R.sid
where R.category = 'homework'
group by S.sid, first, last

Correction:
restrict the join inputs before the outer join is performed, or
move restrictions into the on clause (warning: next slide).

Corrected version of last query
select first, last, count(number)
from Students S left outer join Results R

on (S.sid = R.sid and R.category = 'homework')
group by S.sid, first, last

Inner and Outer Joins

Will exams appear in the output?
select E.category, E.number, R.sid, R.points
from Exercises E left outer join Results R

on E.category = 'homework'
and R.category = 'homework'
and E.number = R.number

Yes, exams will appear!

Conditions filtering the left table make little sense in a left
outer join predicate.

The left outer join will make the “filtered” tuples appear anyway.

Corrected version of last query
select E.category, E.number, R.sid, R.points
from (select * from Exercises where category = 'homework') E

left outer join Results R
on (R.category = 'homework' and E.number = R.number)

