\begin{frame} \frametitle{Review - Midterm Exam 3} \begin{exampleblock}{} Two people are standing together. One begins to walk east at a rate of 2 miles per hour, and at the same time the second begins to walk north at a rate of 3 miles per hour. How fast is their distance growing when the first has walked 4 miles? \pause\medskip \begin{minipage}{.2\textwidth} \begin{tikzpicture}[default,ultra thick] \draw[->] (0,0) -- node[below] {$x$} (1,0); \draw[->] (0,0) -- node[left] {$y$} (0,1); \mpause[1]{ \draw[dashed,shorten <= 2mm, shorten >= 2mm] (0,1) -- node[above right] {$z$} (1,0); } \end{tikzpicture} \end{minipage} \begin{minipage}{.79\textwidth} \pause\pause We know that \pause \begin{talign} \frac{d}{dx} = 2 && \frac{d}{dy} = 3 && \mpause[1]{z^2 = }\mpause{x^2 + y^2} \end{talign} \end{minipage} \pause\pause\pause\smallskip The first has walked $4$ miles when $t = \pause 4/2 = 2h$. \pause At time $t = 2h$:\vspace{-.5ex} \begin{talign} x = 4 && y = \mpause[1]{2*3 = 6} && z = \mpause{\sqrt{6^2 + 4^2} = \sqrt{52} = 2\sqrt{13}} \end{talign} \pause\pause\pause We use implicit differentiation:\vspace{-.5ex} \begin{talign} &\frac{d}{dt} z^2 = \frac{d}{dt}(x^2 + y^2) \mpause[1]{\;\implies\; 2zz' = 2xx' + 2yy'} \\ &\mpause{z' = \frac{2xx' + 2yy'}{2z}} \mpause{= \frac{2 \cdot 4 \cdot 2 + 2\cdot 6 \cdot 3}{2\cdot 2\sqrt{13}}} \mpause{= \frac{13}{\sqrt{13}}} \mpause{= \sqrt{13}} \mpause{\approx 3.6} \end{talign}\vspace{-1.25ex}% \pause\pause\pause\pause\pause\pause\pause Their distance increases with \alert{$\sqrt{13}$ miles per hour}.\vspace{-.6ex} \end{exampleblock} \end{frame}