\begin{frame} \frametitle{Maximum and Minimum Values} \begin{block}{Fermat's Theorem} \alert{If} $f$ has a local maximum or minimum at $c$ and $f'(c)$ exists, \\ \alert{then} $f'(c) = 0$. \end{block} \begin{exampleblock}{} What are the critical numbers of the function\vspace{-.5ex} \begin{talign} f(x) = \sqrt{x} + |x-2| \quad\quad\text{?} \end{talign} \pause Due to $|x-2|$\pause, the derivative is not defined at \quad\alert{x = 2} . \pause\medskip For $x < 2$ we have $|x-2| = \pause -(x-2)$\pause, thus:\vspace{-1ex} \begin{talign} f(x) = \sqrt{x} - (x-2) && \mpause[1]{f'(x) = }\mpause[2]{ \frac{1}{2\sqrt{x}} - 1 } \end{talign}\vspace{-1.5ex} \pause\pause\pause Thus $f'(x) = 0 \;\iff\; \pause \alert{x = 1/4}$\pause, and $f'(x)$ undefined for \alert{$x = 0$}. \pause\medskip For $x > 2$ we have $|x-2| = x-2$\pause, thus:\vspace{-1ex} \begin{talign} f(x) = \sqrt{x} + (x-2) && \mpause[1]{f'(x) = \frac{1}{2\sqrt{x}} + 1}\mpause[2]{ \ge 1} \end{talign} \pause\pause\pause Thus the critical numbers are \alert{$0$}, \alert{$1/4$} and \alert{$2$}. \end{exampleblock} \end{frame}