\begin{frame}{Properties of Recursive Languages} \begin{goal}{Theorem} If $L$, $L_1$ and $L_2$ are recursive, then so are \begin{talign} \overline{L} && L_1 \cup L_2 && L_1 \cap L_2 && L_1 \setminus L_2 && L^* && L_1L_2 \end{talign} \end{goal} \pause \begin{proof}{} Let $L$, $\overline{L}$, $L_1$, $\overline{L_1}$, $L_2$ and $\overline{L_2}$ be recursively enumerable (r.e.). \begin{itemize} \pause \item \alert{$\overline{L}$}: $\overline{L}$ and $\overline{\overline{L}} = L$ are r.e. \pause \item \alert{$L_1 \cup L_2$}: $L_1 \cup L_2$ and $\overline{L_1 \cup L_2} = \overline{L_1} \cap \overline{L_2}$ are r.e. \pause \item \alert{$L_1 \cap L_2$}: $L_1 \cap L_2$ and $\overline{L_1 \cap L_2} = \overline{L_1} \cup \overline{L_2}$ are r.e. \pause \item \alert{$L_1 \setminus L_2 = L_1 \cap \overline{L_2}$} \pause \item \alert{$L_1L_2$}, \alert{$L^*$}: same proof as for recursively enumerable languages. Observe that the constructed Turing machine halts on all inputs if $M_1$, $M_2$ and $M$ do. \end{itemize} \end{proof} \end{frame}