\begin{frame}{Complement}
\begin{alertblock}{}
There exist recursively enumerable languages $L$, for which the complement
$\overline{L}$ is \alert{not} recursively enumerable.
\end{alertblock}
\pause
\begin{proof}{}
Let $M_1, M_2, M_3, \ldots$ be a recursive enumeration of all TMs.
\pause\medskip
Define the language $L$ by
\begin{talign}
L = \{\, a^i\mid a^i\in L(M_i),i\geq 1 \,\}
\end{talign}
\pause
Then $L$ is recursively enumerable.
\pause\smallskip
If $\overline{L}$ was recursively enumerable\pause:
\structure{$\overline{L} = L(M_k)$} for some $k\geq 1$.
\pause\smallskip
Then
\begin{talign}
a^k \in \overline{L} \;\;\text{\structure{$\iff$}}\;\; a^k \in L(M_k) \mpause[1]{ \;\;\text{\alert{$\iff$}}\;\; a^k\in L }
\end{talign}
\pause\pause
\alert{Contradiction}. Hence $\overline{L}$ is not recursively enumerable.
\end{proof}
\pause
\begin{goal}{}
$L_1 \setminus L_2$ is not always recursively enumerable since $\overline{L} = \Sigma^* \setminus L$.
\end{goal}
\end{frame}