\begin{frame}{Applications}
\begin{exampleblock}{}
$L \setminus \{\, \lambda \,\}$ is context-free for every context-free language $L$.
\end{exampleblock}
\pause\medskip
\begin{exampleblock}{}
$\{\,a^n b^n \mid n \geq 1000\,\}$ is context-free.
\end{exampleblock}
\pause\medskip
\begin{exampleblock}{}
Show that the language
\begin{talign}
L = \{\, w\in\{a,b,c\}^*\mid n_a(w) = n_b(w) = n_c(w) \,\}
\end{talign}
is \emph{not} context-free.
\pause\medskip
For a contradiction, assume $L$ was context-free.
\pause\medskip
The language $L(a^*b^*c^*)$ is regular, thus
\begin{talign}
L \cap L(a^*b^*c^*) = \{\, a^n b^n c^n \mid n\geq 0 \,\}
\end{talign}
would be context-free. \pause
However, we know that it is not.
\pause\medskip
Contradiction. Thus $L$ is not context-free.
\end{exampleblock}
\end{frame}