\begin{frame}{Exercises (1)}
\begin{exampleblock}{}
Show that $L = \{\, a^nb^n \mid n\geq 0 \,\}$ has the pumping property.
\pause\medskip
Let $m =2$. \pause Every word $w = a^n b^n$ with $|w| \ge m$ can be split
\begin{talign}
a^n b^n &= uvxyz &
u &= a^{n-1} &
v &= a &
x &= \lambda &
y &= b &
z &= b^{n-1}
\end{talign}
\pause
We have $|vxy| \le m$, $|vy| \ge 1$\pause and
\begin{talign}
uv^ixy^iz = a^{n-1+i} b^{n-1+i} \in L
\end{talign}
for every $i \ge 0$.
\pause
Thus the language has the pumping property.
\end{exampleblock}
\end{frame}