\begin{frame}{Example}
\begin{exampleblock}{}
Assume that $L = \{\,a^n b^n c^n \mid n \geq 0\,\}$ was context-free.
\pause\medskip
According to the pumping lemma there is $m>0$ such that
\begin{talign}
\mpause[1]{a^mb^mc^m} = uvxyz
\end{talign}
with $|vxy| \leq m$, $|vy| \geq 1$, and $uv^ixy^i z \in L$ for every $i \geq 0$.
\pause\pause\medskip
Since $|vxy| \leq m$, \alert{$vy = a^{\,j}b^k$} or \alert{$vy = b^{\,j}c^k$} for some $j,k \ge 0$.
\pause\medskip
Since $|vy|\geq 1$ we have \alert{$j+k \geq 1$}.
\pause\medskip
Then \alert{$uv^2xy^2z$} does not contain equally many $a$'s, $b$'s and $c$'s.
\pause\medskip
\alert{Contradiction}, thus $L$ is not context-free.
\end{exampleblock}
\pause
\emph{Intuitively:}
\begin{itemize}\setlength{\itemsep}{0pt}
\item opponent picks $m$,
\item we pick $w = a^mb^mc^m$,
\item opponent $u,v,x,y,z$
\end{itemize}
\end{frame}