\begin{frame}{Pumping Lemma as a Game}
\begin{goal}{}
To \emph{contradict the pumping property}, we prove the negation:
\begin{talign}
&\alert{\forall} m>0.\\[-.5ex]
&\qquad \alert{\exists} w\in L \text{ with } |w|\geq m.\\[-.5ex]
&\qquad\qquad \alert{\forall} u,v,x,y,z \text{ with } w=uvxyz,\; |vxy| \leq m,\; |vy|\geq 1.\\[-.5ex]
&\qquad\qquad\qquad \alert{\exists} i \geq 0.\, uv^ixy^iz \alert{\not\in} L
\end{talign}
\end{goal}
\begin{block}{Pumping Lemma as a Game}
Given is $L$. \pause We want to prove that $L$ is not context-free.
\begin{enumerate}
\pause
\item Opponent picks \alert{$m$}.
\pause
\item We choose a word \alert{$w\in L$} with $|w|\geq m$.
\pause
\item Opponent picks \alert{$u,v,x,y,z$} \\with $w=uvxyz$, $|vxy|\leq m$ and $|vy|\geq 1$.
\pause
\item If we can find \alert{$i\geq 0$} such that \alert{$uv^ixy^iz\not\in L$}, then \emph{we win}.
\end{enumerate}
\pause
If we can always win, then $L$ has no pumping property!
\end{block}
\end{frame}