\begin{frame}{Pumping Lemma for Context-Free Languages (1961)}
\begin{goal}{Theorem}
Let $L$ be a context-free language.
\medskip
There exists $m>0$ such that
for every word $w \in L$ with \alert{$|w| \geq m$}:
\begin{talign}
\alert{w = uvxyz}
\end{talign}
with \alert{$|vxy| \leq m$} and \alert{$|vy| \geq 1$}, and
\alert{$uv^ixy^i z \in L$} for every $i \geq 0$.
\end{goal}
\pause
\begin{block}{Proof}
Let $G$ be a context-free grammar with $L(G) = L \setminus \{\lambda\}$
\begin{itemize}\setlength{\itemsep}{0pt}
\item with \alert{$k$} variables, and
\item without $\lambda$ and unit productions.
\end{itemize}
\pause
Let \alert{$m$} = 1 + maximum number of leaves of derivation trees of depth $\leq (k + 2)$.
\medskip\pause
\ \hfill continued on next slide\ldots
\end{block}
\end{frame}