\begin{frame}{Deterministic Pushdown Automata}
\begin{block}{}
A \emph{deterministic pushdown automaton} (\emph{DPDA})
is an NPDA such that
\begin{itemize}
\item
$\delta(q,\alert{\alpha},b)$ contains at most one element
\item
If $\delta(q,\alert{\lambda},b) \neq \emptyset$,
then $\delta(q,\alert{a},b) = \emptyset$ for every $a \in \Sigma$.
\end{itemize}
\end{block}
\pause\medskip
\begin{block}{}
A language $L$ is \emph{deterministic context-free}
if there exists a DPDA $M$ with $L(M) = L$.
\end{block}
\medskip
A deterministic context-free $L$ allows for \alert{efficient parsing}.
\end{frame}