\begin{frame}{Example} \begin{exampleblock}{} Consider the following NPDA with stack starting symbol $z=0$: \begin{center} \vspace{-1ex} \begin{tikzpicture}[default,node distance=25mm,->,s/.style={minimum size=5mm}] \node (q0) [state,s] {$q_0$}; \draw ($(q0) + (-8mm,0mm)$) -- (q0); \node (q1) [fstate,s,right of=q0] {$q_1$}; \draw (q0) to[bend left=20] node [label,above,align=center] {$a[0/10]$\\$c[1/11]$} (q1); \draw (q1) to[bend left=20] node [label,below] {$c[1/1]$} (q0); \draw (q1) to[tloop] node [label,above] {$b[1/\lambda]$} (q1); \end{tikzpicture} \vspace{-2ex} \end{center} Ensure that the final state is only be reached with empty stack. \end{exampleblock} \pause \begin{goal}{} We already know how to transform acceptance with final states to acceptance with empty stack. \pause \emph{Here no fresh start state is needed;} the symbol $0$ always remains at the bottom. \end{goal} \pause \begin{exampleblock}{} \begin{center} \input{tikz/npda4.tex} \end{center} \end{exampleblock} \end{frame}