\begin{frame}{Drawing Pushdown Automata}
    The transition graph for a NPDA contains 
      \text{for every \quad \alert{$(q',v) \in \delta(q,\alpha,b)$} \quad}
      \text{an arrow \quad \alert{$q \stackrel{\alpha[b/v]}{\longrightarrow} q'$}}
    We construct NPDA $M$ with $L(M) = \{\, a^n b^n \mid n \geq 0\, \}$.
      Q &=\{q_0,q_1,q_2\} & 
      \Sigma &=\{a,b\} & 
      \Gamma &= \{0,1\} &
      z &= 0 &
      F &= \{q_2\}
      \item In \alert{$q_0$} a stack \alert{$1^k0$} means: we have read $k$ $a$'s.
      \item In \alert{$q_1$} a stack \alert{$1^k0$} means: we still have to read $k$ $b$'s.
      \begin{tikzpicture}[default,node distance=25mm,->,s/.style={minimum size=5mm}]
        \node (q0) [state,s] {$q_0$}; \draw ($(q0) + (-8mm,0mm)$) -- (q0); 
        \mpause[1]{\draw (q0) to[tloop] node [label,above] {$a[0/10]$} (q0);}
        \mpause{\draw (q0) to[bloop] node [label,below] {$a[1/11]$} (q0);}

        \mpause{\node (q1) [state,s,right of=q0] {$q_1$};}
        \mpause{\draw (q0) to node [label,above] {$b[1/\lambda]$} (q1);}
        \mpause{\draw (q1) to[tloop] node [label,above] {$b[1/\lambda]$} (q1);}
        \mpause{\node (q2) [fstate,s,right of=q1] {$q_2$};}
        \mpause{\draw (q1) to node [label,above] {$\lambda[0/\lambda]$} (q2);}
        \mpause{\draw (q0) to[bend right=20] node [label,below] {$\lambda[0/\lambda]$} (q2);}