\begin{frame}{Language Accepted by a Pushdown Automaton}
A \emph{configuration} $(q,w,u)$ of an NPDA consists of:
\smallskip
\begin{itemize}\setlength{\itemsep}{0pt}
\item current state \alert{$q \in Q$}
\item input word \alert{$w \in \Sigma^*$}
\item current stack \alert{$u \in \Gamma^*$}
\end{itemize}
\pause\medskip
\begin{goal}{}
The \emph{step relation} on configurations is defined by
\begin{talign}
(q,\, \alpha w,\, bu) \vdash (q',\, w,\, vu)
\end{talign}
whenever $(q',v) \in \delta(q,\alpha,b)$.
\end{goal}
We write $\vdash^*$ for computation (zero or more steps).
\pause\medskip
\begin{block}{}
The \emph{language generated by} NPDA
$M=(Q,\Sigma,\Gamma,\delta,q_0,z,F)$ is
\begin{talign}
L(M) = \{\, w \in \Sigma^* \mid (q_0,w,z) \vdash^* (q',\lambda,u) \text{ where } q' \in F \,\}.
\end{talign}
\end{block}
Note: no condition on the stack $u$ at the end.
\bigskip
\end{frame}