\begin{frame}{Exercise} \begin{exampleblock}{} Use the CYK algorithm to check whether $abbb$ is generated by \begin{talign} S &\to AB & A &\to BB \mid a & B &\to AB \mid b \end{talign} We have\vspace{-1ex} \begin{talign} V_{a} &= \mpause[1]{\{\, A \,\} \quad\text{since $A \to a$}} \\ V_{b} &= \mpause{\{\, B \,\} \quad\text{since $B \to b$}} \\ V_{ab} &= \mpause{\{\, X \mid X \to V_a V_b = \{\,AB\,\} \,\}} \mpause{= \{\, S,B \,\}} \\ V_{bb} &= \mpause{\{\, X \mid X \to \malert{+14}{2}{V_b V_b} = \{\,\malert{+14}{2}{BB}\,\} \,\}} \mpause{= \{\, A \,\}} \\ V_{abb} &= \mpause{\{\, X \mid X \to V_a V_{bb} \cup V_{ab} V_b = \{\,AA, SB, BB\,\} \,\}} \mpause{= \{\, A \,\}} \\ V_{bbb} &= \mpause{\{\, X \mid X \to V_b V_{bb} \cup \malert{+8}{2}{V_{bb} V_b} = \{\,BA, \malert{+8}{2}{AB}\,\} \,\}} \mpause{= \{\, S,B \,\}} \\ V_{abbb} &= \mpause{\{\, X \mid X \to \malert{+4}{2}{V_a V_{bbb}} \cup V_{ab} V_{bb} \cup V_{abb} V_{b} \,\}} \\ &\mpause{= \{\, X \mid X \to \{\,AS, \malert{+3}{2}{AB}, SA, BA\,\} \,\}} \mpause{= \{\, S,B \,\}}\\[-3.5ex] \end{talign} \pause[15] The word $abbb$ is in the language since $S \in V_{abbb}$\pause\mpause[0]{}: \begin{talign} \malert{+0}{1}{\underbrace{S}_{abbb}} \!\to\! \mpause{\underbrace{A}_{a}\malert{+1}{1}{\underbrace{B}_{bbb}} \!\to\!}\mpause{} \mpause{\underbrace{A}_{a}\malert{+1}{1}{\underbrace{A}_{bb}}\underbrace{B}_{b} \!\to\!}\mpause{} \mpause{\underbrace{A}_{a}\underbrace{B}_{b}\underbrace{B}_{b}\underbrace{B}_{b} \!\to^4\!}\mpause{abbb} \end{talign} \end{exampleblock} \end{frame}