\begin{frame}{Exercises (3)}
% (Groups of two, 1 minute)
\begin{exampleblock}{}
\emph{Is the following language context-free?}
\begin{talign}
L = \{\, ww \mid w \in \Sigma^* \,\}
\end{talign}
where $\Sigma = \{a,b\}$.
\bigskip
On the previous slide, we have shown that $\overline{L}$ is context-free.
\end{exampleblock}
\pause\bigskip
\begin{alertblock}{}
This language is not context-free.
\end{alertblock}
We will prove this using the context-free pumping lemma.
\pause\bigskip
\begin{goal}{}
The class of context-free languages is not \emph{closed under complement}.
\end{goal}
\end{frame}
\subsection{Derivation Trees}
\themex{Derivation Trees and Ambiguity}