\begin{frame}{Exercises (2)} \begin{exampleblock}{} \emph{Show that the following language is context-free:} \begin{talign} L = \Sigma^* \setminus \{\, ww \mid w \in \Sigma^* \,\} \end{talign} where $\Sigma = \{a,b\}$. \pause What shape do words $w \in L$ have? \begin{itemize} \pause \item $w$ has \emph{odd length}; \vspace{-.5ex} \pause \item $w$ has \emph{even length} such that \pause $w = uv$ with $|u| = |v|$ and \pause %\vspace{-.5ex} \begin{talign} u(m) \ne v(m) \end{talign} for some $0 \le m < |u|$. \pause Let $n = |u| - m-1$. Then $w$ is in \begin{talign} \begin{aligned} &\,\Sigma^m \, \{\,a\,\} \, \Sigma^n \,\, \Sigma^m \, \{\,b\,\} \, \Sigma^n \\ \cup\; &\underbrace{\Sigma^m \, \{\,b\,\} \, \Sigma^n}_{u} \, \underbrace{\Sigma^m \, \{\,a\,\} \, \Sigma^n}_{v} \end{aligned} \mpause[1]{ && \raisebox{1.5ex}{$=$} && \begin{aligned} &\,\Sigma^m \, \{\,a\,\} \, \Sigma^m \,\, \Sigma^n \, \{\,b\,\} \, \Sigma^n \\ \cup\; &\underbrace{\Sigma^m \, \{\,b\,\} \, \Sigma^m}_{u} \, \underbrace{\Sigma^n \, \{\,a\,\} \, \Sigma^n}_{v} \end{aligned} } \end{talign} \end{itemize} \pause\pause\vspace{-.5ex} We give a context-free grammar for the language: \begin{talign} S &\to AB \mid BA \mpause[1]{\mid A \mid B} & A &\to XAX \mid a & X \to a \mid b\\ && B &\to XBX \mid b \end{talign} \end{exampleblock} \pause\bigskip \end{frame}