\begin{frame}{Exercise (2)} \begin{exampleblock}{} Use the pumping lemma to \emph{show that} \begin{talign} L = \{\,a^{2^k}\mid k\geq 0\,\} \end{talign} \emph{is not regular}. \pause Assume that $L$ was regular. \pause\medskip By the pumping lemma there exists $m>0$ such that \begin{talign} \mpause[1]{a^{2^m}} = xyz \end{talign} with $|xy| \leq m$, $|y| \geq 1$, and $xy^i z \in L$ for every $i \geq 0$. \pause\pause\medskip Since $|xy| \leq m$ and $|y|\geq 1$, it follows that \begin{talign} x=a^{\,j} &&\text{and}&& y = a^k \end{talign} with $j\geq 0$, $k\geq 1$ and $j + k \le m$. \pause\medskip We have $k \le m < 2^m$ \pause and hence $2^m < 2^m + k < 2^{m+1}$. \pause\medskip Contradiction: $xy^2z = a^{2^m+k} \not\in L$! \pause Thus $L$ is not regular.\qed \end{exampleblock} \end{frame}