\begin{frame}{Exercise (2)}
\begin{exampleblock}{}
Use the pumping lemma to \emph{show that}
\begin{talign}
L = \{\,a^{2^k}\mid k\geq 0\,\}
\end{talign}
\emph{is not regular}.
\pause
Assume that $L$ was regular.
\pause\medskip
By the pumping lemma there exists $m>0$ such that
\begin{talign}
\mpause[1]{a^{2^m}} = xyz
\end{talign}
with $|xy| \leq m$, $|y| \geq 1$, and $xy^i z \in L$ for every $i \geq 0$.
\pause\pause\medskip
Since $|xy| \leq m$ and $|y|\geq 1$, it follows that
\begin{talign}
x=a^{\,j} &&\text{and}&& y = a^k
\end{talign}
with $j\geq 0$, $k\geq 1$ and $j + k \le m$.
\pause\medskip
We have $k \le m < 2^m$ \pause and hence $2^m < 2^m + k < 2^{m+1}$.
\pause\medskip
Contradiction: $xy^2z = a^{2^m+k} \not\in L$! \pause Thus $L$ is not regular.\qed
\end{exampleblock}
\end{frame}