\begin{frame}{Pumping Lemma Example}
\begin{goal}{}
The \emph{pumping lemma} can be used to prove that a language is \emph{not regular}.
\end{goal}
\pause
\begin{exampleblock}{}
Assume that $L = \{\, w \in \{a,b\}^* \mid w = w^R \,\}$ is regular.
\pause\medskip
By the pumping lemma there exists $m>0$ such that
\begin{talign}
\mpause[1]{a^mba^m} = xyz
\end{talign}
with $|xy| \leq m$, $|y| \geq 1$, and $xy^i z \in L$ for every $i \geq 0$.
\pause\pause\medskip
Since $|xy| \leq m$ and $|y|\geq 1$, it follows that
\begin{talign}
x=a^{\,j} &&\text{and}&& y = a^k
\end{talign}
with $j\geq 0$ and $k\geq 1$.
\pause\medskip
However $xyyz = a^{m+k} b a^m \not\in L$. \pause Contradiction!
\pause\medskip
Thus $L$ is not regular.\qed
\end{exampleblock}
\end{frame}