\begin{frame}{Pumping Lemma Example} \begin{goal}{} The \emph{pumping lemma} can be used to prove that a language is \emph{not regular}. \end{goal} \pause \begin{exampleblock}{} Assume that $L = \{\, w \in \{a,b\}^* \mid w = w^R \,\}$ is regular. \pause\medskip By the pumping lemma there exists $m>0$ such that \begin{talign} \mpause[1]{a^mba^m} = xyz \end{talign} with $|xy| \leq m$, $|y| \geq 1$, and $xy^i z \in L$ for every $i \geq 0$. \pause\pause\medskip Since $|xy| \leq m$ and $|y|\geq 1$, it follows that \begin{talign} x=a^{\,j} &&\text{and}&& y = a^k \end{talign} with $j\geq 0$ and $k\geq 1$. \pause\medskip However $xyyz = a^{m+k} b a^m \not\in L$. \pause Contradiction! \pause\medskip Thus $L$ is not regular.\qed \end{exampleblock} \end{frame}