\begin{frame}{Minimal DFAs (2)} \begin{goal}{} States $q_1,q_2 \in Q$ are \emph{distinguishable} if there exists $w \in \Sigma^*$ s.t. \begin{talign} q_1 \apath{w} q_1' \in F && q_2 \apath{w} q_2' \not\in F\;, \end{talign} or vice versa. \end{goal} \pause \begin{block}{} \emph{Step 2:} Partition $Q$ in indistinguishable states. \medskip We construct the partitioning stepwise: \begin{itemize} \pause\smallskip \item Initial partitioning is $\{\, Q\setminus F,\,F\,\}$. \pause \item If there are partitions $R$ and $S$ such that \begin{talign} \delta(q,a)\in S &&\text{and}&& \delta(q',a)\not\in S, \end{talign} for some $a \in \Sigma$ and $q,q' \in R$, then we split $R$ in \begin{talign} \{\, q \in R \mid \delta(q,a)\in S \,\} && \{\,q \in R \mid \delta(q,a) \not\in S\,\} \end{talign} \end{itemize} \pause We keep splitting until no more split is possible. \end{block} \end{frame}