\begin{frame}{Minimal DFAs (Hopcroft, 1971)}
\begin{goal}{Goal}
Given a DFA $M=(Q,\Sigma,\delta,q_0,F)$.
\medskip
Construct the (unique) \emph{minimal DFA} $\widehat{M}$ with $L(M) = L(\widehat{M})$.\\
\end{goal}
(Here minimal is with respect to the number of states.)
\pause\medskip
\begin{construction}
\emph{Step 1:} Remove all unreachable states from $M$.
\medskip
\emph{Step 2:} Partition $Q$ in indistinguishable states.
\medskip
\emph{Step 3:} Read off the minimal DFA.
\end{construction}
\pause\medskip
\begin{block}{}
\emph{Step 1:} Remove all unreachable states from $M$.
\medskip
Remove all states $q \in Q$ for which there is no path from $q_0$ to $q$.
\end{block}
\end{frame}