\begin{frame}{Regular Expressions}
\begin{block}{}
We define the \emph{regular expressions} over an alphabet $\Sigma$:
\begin{itemize}
\item \alert{$\emptyset$} is a regular expression
\item \alert{$\lambda$} is a regular expression
\item \alert{$a$} is a regular expression for every $a \in \Sigma$
\item \alert{$r_1+r_2$} is a regular expression for all regular expr.\ $r_1$ and $r_2$
\item \alert{$r_1\cdot r_2$} is a regular expression for all regular expr.\ $r_1$ and $r_2$
\item \alert{$r^*$} is a regular expression for all regular expressions $r$
\end{itemize}
\end{block}
\pause\medskip
A regular expression is syntax, describing a language.
\begin{goal}{}
Every \emph{regular expression} $r$ defines a \emph{language} $L(r)$:
\begin{talign}
L(\emptyset) &= \emptyset &
L(r_1 + r_2) &= L(r_1) \cup L(r_2) \\
L(\lambda) &= \{\, \lambda \,\} &
L(r_1 \cdot r_2) &= L(r_1) L(r_2) \\
L(a) &= \{\, a \,\} \text{\;\; for $a\in\Sigma$} &
L(r^*) &= L(r)^*
\end{talign}
\end{goal}
\end{frame}